首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 42 毫秒
1.
以液相复合-连续还原碳化方法制备的纳米复合WC-6Co粉末为原料,采用放电等离子烧结(SPS),制取了超细硬质合金。利用扫描电镜、维氏硬度仪、洛氏硬度仪、密度测试仪、MTS陶瓷测试系统等,观察烧结体显微结构,测试其硬度、密度、断裂强度、矫顽磁力、磁饱和度。结果表明采用放电等离子烧结获得的烧结体的硬度HVl≥19500MPa,断裂强度TRS≥2800MPa,平均晶粒度150nm~300nm。制备了高强度、高硬度的超细WC-6Co硬质合金。  相似文献   

2.
SPS烧结WC-5%Co纳米复合粉硬质合金   总被引:1,自引:0,他引:1  
采用喷雾干燥、流态化床化学转化法生产的WC-5%Co纳米复合粉为原料,研究了放电等离子体烧结(SPS)对超细硬质合金显微结构和性能的影响,同时对SPS烧结、低压烧结、真空烧结等三种工艺进行了比较。结果表明:采用SPS烧结可以在较低的温度下实现超细硬质合金的固相烧结,使合金快速致密化,当1170℃保温6min、压力为50MPa时合金可以获得最好的力学性能;其显微硬度HV30、抗弯强度、断裂韧性分别为1870、3230MPa、10.96MPa/m1/2。低压烧结可促进颗粒在液相中重排,硬质合金压坯经8MPa、1410℃、保温45min烧结,也可以获得比较好的力学性能;而传统真空烧结,合金孔隙度比较高,晶粒不均匀,性能较差。  相似文献   

3.
纳米晶WC-10Co硬质合金复合粉末的烧结行为及性能   总被引:1,自引:0,他引:1  
研究了机械合金化制备的纳米晶WC-10Co复合粉末的真空烧结特征,分析了孔隙度、显微硬度与烧结时间和温度的关系,考察了改性ZrO2纳米粉体对烧结的作用。结果表明:在1325℃,15min的烧结条件下,样品的相对密度达到了98.6%;显微硬度随着烧结时间的延长和烧结温度的升高先增加后降低,在1325℃烧结15min条件下,合金的最大硬度为22950MPa;改性ZrO2纳米粉体既有利于晶粒长大的控制,同时又有利于材料致密化的进行,可以显著的提高烧结合金的性能。  相似文献   

4.
徐涛 《硬质合金》2011,28(4):219-227
本文探讨了喷雾转换法制备WC/Co纳米复合粉的生产工艺特点、粉末的物理化学特性以及在超细合金中的应用效果。各方面的实验数据表明:WC/Co复合粉中WC碳化完全、粒度细而均匀,钨钴元素达到分子级均匀混合,Co对WC形成纳米级包覆,粉末颗粒外形多呈球状,球体由部分合金化的WC/Co粒子聚合而成,粒子之间存在明显的烧结颈,其亚晶尺寸在100nm以下。复合粉经强化球磨后制取的超细合金较传统工艺制备的合金的WC相晶粒更加均匀,具有更好的物理力学性能和更高的使用寿命。即使不添加抑制剂,复合粉制备的合金仍具有晶粒细而均匀的特点。  相似文献   

5.
未来充满希望的纳米WC—Co材料   总被引:3,自引:0,他引:3  
  相似文献   

6.
本文探讨了常规烧结和场助烧结时WC-Co合金的固态烧结行为。在常规烧结中,纳米和超细WC-Co合金的密度比粗晶及细晶合金增加得更快。在纳米/超细和粗WC-Co粉之间出现最大致密化速率的温度差别在50℃以上。添加晶粒长大抑制剂特别是Cr3C2也能阻滞固态阶段的致密化。在场助烧结中,在更低的固态烧结温度下,WC-Co合金就可获得比常规烧结更高的密度。常规和场助烧结之间密度的差别随温度的增高而降低。  相似文献   

7.
8.
《硬质合金》2014,(4):209-216
本文以喷雾转化法制备的WC-6%Co复合粉为研究对象,通过研磨、分散等手段,结合扫描电子显微镜、X射线衍射仪、离子束抛光、激光粒度分布及Co浸蚀等方法,详细分析了其形貌、内部结构、粒度等参数,得出了复合粉团粒松散空心球体结构下的一次颗粒表现为预合金化的团聚状态,该团聚体形状、大小差异较大,且不易被破碎,对一次颗粒的剖面分析清晰地揭示出复合粉的预合金化,团聚体内部有大量的孔隙存在。由于预合金化的作用,约质量分数为1%的Co因WC阻隔不能与酸发生反应。复合粉经过研磨后的分布数据显示,虽然有少量的粗颗粒聚集现象,但测量数据基本稳定,粒度分布D50值为2μm左右,为复合粉的相关研究提供依据。  相似文献   

9.
超细WC-Co复合粉是制备高性能超细/纳米晶硬质合金的重要原料之一,近年来发展了多种复合粉的制备技术。本文综述了其中的喷雾转换工艺法、化学沉淀法、原位还原碳化法、化学气相反应合成法和机械合金化法的研究和应用状况。同时简要介绍了一些新型的快速烧结技术的原理,以及这些新型的快速烧结技术制备的超细/纳米晶硬质合金上的研究进展,并对快速烧结技术在硬质合金领域发展前景进行了分析。  相似文献   

10.
针对无氢碳化中反应速率缓慢、颗粒长大的问题,在无氢碳化过程中添加少量Pt作为催化剂,制备纳米WC粉。采用热压烧结对WC粉进行烧结得到无粘结相硬质合金。研究了Pt添加对WC粉的形貌和烧结性能的影响,以及Pt和烧结温度对烧结样品的致密化,组织和力学性能的影响。结果表明,少量的Pt可显著降低无氢碳化温度,制备的WC粉粒径细小且均匀。随着烧结温度升高,无粘结相硬质合金的致密度增加,晶粒尺寸增大,硬度与断裂韧性增加,但烧结温度过高,出现异常长大晶粒和W2C,导致无粘结相硬质合金的断裂韧性严重下降。最佳烧结工艺为,烧结温度1700 ℃,保温60 min,压力40 MPa,所得无粘结相硬质合金致密度达到98.8%,平均晶粒尺寸为263.6 nm,维氏硬度和断裂韧性分别为2887 kg.mm-2和7.1 MPa.mm1/2。  相似文献   

11.
铝基纳米复合材料的电子显微镜研究   总被引:2,自引:0,他引:2  
钟震晨 《金属学报》1996,32(2):215-218
一种由部分非晶和部分晶体组成的新型铝合金可以用液态旋淬法直接制备,其力学性能非常优异。电镜观察表明这种纳米复合材料具有新颖的结构:纳米级Al晶体均匀弥散分布在非晶体上且无择优取向,Al晶体具有面心立方结构。高分辨电镜初步结果显示这种Al了无内部缺陷,但存在某种程度的畸变,且界面结构非常复杂。  相似文献   

12.
纳米WC-Co复合粉的研究   总被引:5,自引:1,他引:5  
叙述了纳米硬质合金的发展概况及应用。并主要介绍了优质纳米 WC- Co复合粉末所应具备的条件及纳米 WC- Co复合粉末的制备方法和烧结。  相似文献   

13.
超细碳化钨钴复合粉末的合成   总被引:6,自引:1,他引:6  
王柱  魏明坤 《硬质合金》1996,13(1):20-22
报导了超细碳化钨钴复合粉末的合成方法.作者用一种新的,可通用的,分步热解—热化学转化工艺成功地合成了超细碳化钨钴复合粉末,并用扫描电子显微镜,X射线衍射,透射电子显微镜和差热分析对超细碳化钨钴复合粉末及其中间产物进行了测试分析.结果表明,这种方法合成的碳化钨钴复合粉末具有良好的综合性能及超细的平均晶粒度(<200nm).  相似文献   

14.
采用亚微米WC粉和纳米Co粉以及亚微米WC粉和微米Co粉的混合粉末作为原料,利用放电等离子烧结(SPS)技术制备超细晶WC-10Co硬质合金.对比研究表明,以两种混合粉末为原料均获得了平均晶粒尺寸约为200 nm的超细硬质合金材料.其中,采用微米Co粉制备的材料的相对密度达到98.0%以上,硬度HRA达到94.5,断裂韧性达到13.50 MPa·m1/2,具有优良的综合性能;而采用纳米Co粉制备的硬质合金的组织均匀性和性能较差.根据SPS技术的烧结机理,对混合粉末的致密化机制进行了分析.  相似文献   

15.
PREPARATIONOFTiAlBASEDNANOPHASECOMPOSITEPOWDERBYMECHANICALALLOYING①WuNianqiang,WuJinming,LiWu,WangGuangxin,LiZhizhangDepartm...  相似文献   

16.
采用预合金粉、部分合金化粉、混合粉,制得具有理想物理性能、压制性能和烧结性能的Cu-Sn粉末,研究了粉末组成对压坯密度、压坯强度、烧结后尺寸变化、烧结密度和烧结强度等性能的影响。  相似文献   

17.
以真空-气压烧结炉为主要手段,研究了WC—Co硬质合金在真空烧结中的行为及气压烧结的作用。结果表明:YG8牌号的硬质合金的真空烧结起始于约940℃,终止于约1420℃,其真空烧结机理为相界反应控制的“溶解-淀析”过程。采用气压烧结工艺后,材料各方面性能均有明显改善。  相似文献   

18.
硬质合金氢气烧结的变形机理及其控制   总被引:4,自引:1,他引:4  
洪程  李学芳 《硬质合金》2000,17(3):156-160
分析了硬质合金在氢气烧结中产生变形的原因 ,这些原因包括压坯密度不均匀、炉内碳气氛不均匀、炉内温度分布不均匀、压坯的外形特征以及不恰当的装舟方式。采用一些特殊的方法可以控制这些因素的影响 ,甚至利用这些因素来相互制衡 ,从而减小或避免压坯在烧结中的变形。  相似文献   

19.
纳米WC-Co复合材料制备及其烧结过程   总被引:22,自引:4,他引:22  
综述了纳米 WC- Co复合材料制备技术的进展并分析了烧结过程和新的烧结技术。对各种制备方法的原理、原料、工艺流程进行了介绍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号