首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Titanium nitride TiNx (0.1 ≤ x ≤ 1) thin films were deposited onto Al2O3(0001) substrates using reactive magnetron sputtering at substrate temperatures (Ts) ranging from 800 to 1000 °C and N2 partial pressures (pN2) between 13.3 and 133 mPa. It is found that Al and O from the substrates diffuse into the substoichiometric TiNx films during deposition. Solid-state reactions between the film and substrate result in the formation of Ti2O and Ti3Al domains at low N2 partial pressures, while for increasing pN2, the Ti2AlN MAX phase nucleates and grows together with TiNx. Depositions at increasingly stoichiometric conditions result in a decreasing incorporation of substrate species into the growing film. Eventually, a stoichiometric deposition gives a stable TiN(111) || Al2O3(0001) structure without the incorporation of substrate species. Growth at Ts 1000 °C yields Ti2AlN(0001), leading to a reduced incorporation of substrate species compared to films grown at 900 °C, which contain also Ti2AlN(101?3) grains. Finally, the Ti2AlN domains incorporate O, likely on the N site, such that a MAX phase oxynitride Ti2Al(O,N) is formed. The results were obtained by a combination of structural methods, including X-ray diffraction and (scanning) transmission electron microscopy, together with spectroscopy methods, which comprise elastic recoil detection analysis, energy dispersive X-ray spectroscopy, and electron energy loss spectroscopy.  相似文献   

2.
In this paper, the metal to ceramic transition of the Al-N2 system was investigated using classical reactive pulsed-DC magnetron sputtering and HIgh Power Impulse Magnetron Sputtering (HIPIMS) at a constant average current of 3 A. Optical emission spectroscopy measurements revealed more ionised aluminium species in the HIPIMS discharge compared to pulsed-DC sputtering. It also showed excited N0 and ionised N+ species in reactive Ar/N2 HIPIMS discharges. The corresponding evolution of the consumed nitrogen flow as a function of the N2 partial pressure revealed that a higher amount of reactive gas is needed to achieve stoichiometric AlN with HIPIMS. Electron probe micro-analysis and X-ray diffraction measurements confirmed that a partially poisoned aluminium target is enough to allow the deposition of stoichiometric hcp-AlN thin films via HIPIMS. To go further in the comparison of both processes, two stoichiometric hexagonal aluminium nitride thin films have been deposited. High power impulse magnetron sputtered hcp-AlN exhibits a higher nano-hardness (18 GPa) than that of the coating realised with conventional pulsed-DC sputtering (8 GPa).  相似文献   

3.
TiN and Ti1−xAlxN thin films with different aluminum concentrations (x = 0.35, 0.40, 0.55, 0.64 and 0.81) were synthesized by reactive magnetron co-sputtering technique. The structure, surface morphology and optical properties were examined using Grazing Incidence X-ray Diffraction (GIXRD), Atomic Force Microscopy (AFM), Raman spectroscopy and spectroscopic ellipsometry, respectively. The structure of the films were found to be of rocksalt type (NaCl) for x = 0.0–0.64 and X-ray amorphous for x = 0.81. AFM topographies show continuous mound like structure for the films of x between 0.0 and 0.64, whereas the film with x = 0.81 showed smooth surface with fine grains. Micro-Raman spectroscopic studies indicate structural phase separation of AlN from TiAlN matrix for x > 0.40. Ti1−xAlxN has the tendency for decomposition with the increase of Al concentration whereas c-TiN and hcp-AlN are stable mostly. The optical studies carried out by spectroscopic ellipsometry measurements showed a change from metallic to insulating behavior with the increase in x. These films are found to be an insulator beyond x = 0.81.  相似文献   

4.
Chen L  Holec D  Du Y  Mayrhofer PH 《Thin solid films》2011,519(16):5503-5510
Multinary Ti-Al-N thin films are used for various applications where hard, wear and oxidation resistant materials are needed. Here, we study the effect of Zr addition on structure, mechanical and thermal properties of Ti1-xAlxN based coatings under the guidance of ab initio calculations. The preparation of Ti1-x-zAlxZrzN by magnetron sputtering verifies the suggested cubic (NaCl-type) structure for x below 0.6-0.7 and z ≤ 0.4. Increasing the Zr content from z = 0 to 0.17, while keeping x at ~ 0.5, results in a hardness increase from ~ 33 to 37 GPa, and a lattice parameter increase from 4.18 to 4.29 Å. The latter are in excellent agreement with ab initio data. Alloying with Zr also promotes the formation of cubic domains but retards the formation of stable wurtzite AlN during thermal annealing. This leads to high hardness values of ~ 40 GPa over a broad temperature range of 700-1100 °C for Ti0.40Al0.55Zr0.05N. Furthermore, Zr assists the formation of a dense oxide scale. After 20 h exposure in air at 950 °C, where Ti0.48Al0.52N is already completely oxidized, only a ~ 1 μm thin oxide scale is formed on top of the otherwise still intact ~ 2.5 μm thin film Ti0.40Al0.55Zr0.05N.  相似文献   

5.
Mechanical properties of gradient and multilayered TiAlSiN hard coatings   总被引:1,自引:0,他引:1  
Multicomponent coatings based on different metallic and non-metallic elements possess the combined benefit of individual components leading to further improvement of coating properties. In this study, monolayered Ti-Al-N, multilayered Ti-Al-N/TiN, gradient Ti-Al-Si-N, and multilayered Ti-Al-Si-N/TiN coatings were synthesized by using a cathodic-arc evaporation (CAE) system. In addition to Ti, Ti33Al67 and Al88Si12 cathodes were used for the deposition of Ti-Al-N, and Ti-Al-Si-N coatings, respectively. The gradient Ti0.50Al0.43Si0.07N, and multilayered Ti0.50Al0.43Si0.07N/TiN with nanograins separated by disordered grain boundaries possessed lower residual stress (− 2.8 ~ − 4.8 GPa) than that of monolayered Ti-Al-N (− 6.8 GPa) and multilayered Ti-Al-N/TiN coatings (− 5.7 GPa). The highest hardness was obtained for the gradient Ti0.50Al0.43Si0.07N (38 ± 2 GPa) with Ti/(Ti + Al + Si) content ratio being 0.5. On the contrary, the multilayered Ti0.50Al0.43Si0.07N/TiN possessed the highest H3/E?2 ratio of 0.182 ± 0.003 GPa, indicating the best resistance to plastic deformation, among the studied coatings.  相似文献   

6.
In this work, a series of Cr1−xAlxN (0 ≤ x ≤ 0.7) coatings were deposited on high speed steel substrates by a vacuum arc reactive deposition process from two lateral rotating elemental chromium and aluminum cathodes in a flowing pure nitrogen atmosphere. The composition, structural, mechanical, and tribological properties of the as-deposited coatings were systematically characterized by energy dispersive analysis of X-rays, X-ray diffraction, nanoindentation, and ball-on-disc tribometer experiments. All of the as-deposited CrAlN coatings exhibited a higher hardness than CrN, showing a maximum hardness of about 40 GPa (at around X = 0.63) which is twice higher than that of the CrN. The wear performance under ambient conditions of the CrAlN coatings was found much better, with both lower friction coefficient and wear rate, than TiAlN coatings deposited by the same technique. The wear rate of the CrAlN coatings against alumina counterpart was about 2-3 orders in magnitude lower than that of the TiAlN coatings. Selected CrAlN coatings with the highest hardness were also deposited on some WC-based end-mills. An evident better performance of the CrAlN-coated end-mills was observed than the TiAlN-coated ones for cutting a hardened tool steel material under high speed machining conditions.  相似文献   

7.
AlxIn1 − xN (AlInN) films with x = 0.36 and 0.55 were grown on glass substrate by pulsed direct-current reactive sputtering. X-ray photoelectron spectroscopy depth profiles revealed that oxygen diffused from glass substrate to AlInN films at temperatures ≧ 300 °C. After applying AlN buffer layer, the crystallinity of AlInN films was markedly improved without oxygen contamination observed. The AlN-buffered AlInN films are c-axis-oriented with low full-width-at-half-maximum of 2.9°-3.5°, fine-grained, and low electron concentration, which are comparable with AlInN films grown by other high-temperature processes. AlN buffer layer is proved to be good seeding and diffusion-barrier layers for AlInN films deposited on glass substrates.  相似文献   

8.
Miao-I. Lin 《Thin solid films》2010,518(10):2732-6078
(AlCrTaTiZr)Ox films were deposited at 350 °C by DC magnetron sputtering from high-entropy alloy target. Oxygen concentration increases with oxygen flow ratio, and saturates near 67 at.%. As-deposited films have an amorphous structure. Their hardness fall in the range of 8-13 GPa. All amorphous oxide films maintain their amorphous structure up to 800 °C for at least 1 h. After 900 °C 5 h annealing, crystalline phases with the structures of ZrO2, TiO2, or Ti2ZrO6 form. Annealing enhances mechanical properties of the films. Their hardness and modulus attain to the values about 20 and 260 GPa, respectively. The resistivity of the metallic films is around 102 μΩ cm but drastically rises to 1012 μΩ cm when oxygen concentration increases.  相似文献   

9.
The effect of aluminum (Al) addition to titanium nitride (TiN) matrix on the structural, mechanical and corrosion resistance properties of titanium-aluminum-nitride was studied. Ti1−xAlxN where x = 0, 0.5 and 1 films were coated onto substrates like Si wafer, AISI 316L stainless steel and low carbon steel by a direct current magnetron sputtering process. The layers were sputtered in pure Argon with a substrate temperature maintained at 400 °C, power of 250 W and a sputtering time of 120 min. XRD, TEM-SAED pattern and XPS analyses were made to study the structural properties of these films. Laser Raman spectrum showed the characteristic peaks at 249 and 659 cm−1 for the Ti0.5Al0.5N film. AFM analysis showed a relatively smooth surface for the ternary film. Corrosion performance analysis indicated that the Ti0.5Al0.5N coated specimen had superior corrosion resistance when compared to TiN and AlN coated substrates. Higher values of nanohardness and lower coefficient of friction were observed for the Ti 0.5Al0.5N specimen. Blood platelet adhesion experiments were made to examine the interaction between human blood and the materials in vitro.  相似文献   

10.
Single-crystalline layers of GaN and related alloys such as AlGaN and InGaN were grown on Al2O3 (0001) substrates by radio-frequency magnetron sputter epitaxy. The crystalline structures of these layers were studied as functions of substrate temperature, N2 composition ratio in N2/Ar mixture source gas and gas pressure during the growth. Surface structure of GaN layer depended on Ga/N ratio in flux density, and nitrogen-rich growth condition resulted in pyramid-type facet structure whereas Ga-rich growth produced flat surface. The crystalline quality of GaN layer improved at relatively low N2 composition ratios, and the GaN layer grown at 30% N2 condition was transparent and colorless. AlxGa1−xN layers with x = 0.06-0.08 and InxGa1−xN layers with x = 0.45-0.5, were obtained at 30-40% and 30-50% N2 composition ratios, respectively. The AlN and InN molar fractions in these layers were considerably different from Al and In molar fractions in starting metal alloys (x = 0.15 in both AlxGa1−x and InxGa1−x alloys).  相似文献   

11.
Compositional and structural evolution of sputtered Ti-Al-N   总被引:1,自引:0,他引:1  
The compositional and structural evolution of Ti-Al-N thin films as a function of the total working gas pressure (pT), the N2-to-total pressure ratio (pN2/pT), the substrate-to-target distance (ST), the substrate position, the magnetron power current (Im), the externally applied magnetic field, and the energy and the ion-to-metal flux ratio of the ion bombardment during reactive sputtering of a Ti0.5Al0.5 target is investigated in detail. Based on this variation we propose that the different poisoning states of the Ti and Al particles of the powder-metallurgically prepared Ti0.5Al0.5 target in addition to scattering and angular losses of the sputter flux cause a significant modification in the Al/Ti ratio of the deposited thin films ranging from ~ 1.05 to 2.15.The compositional variation induces a corresponding structural modification between single-phase cubic, mixed cubic-hexagonal and single-phase hexagonal. However, the maximum Al content for single-phase cubic Ti1−xAlxN strongly depends on the deposition conditions and was obtained with x = 0.66, for the coating deposited at 500 °C, pT = 0.4 Pa, ST = 85 mm, and pN2/pT = 17%. Our results show, that in particular, the N2-to-total pressure ratio in combination with the sputtering power density of the Ti0.5Al0.5 compound target has a pronounced effect on the Al/Ti ratio and the structure development of the coatings prepared.  相似文献   

12.
Chromium nitride (CrNx) coatings were prepared by reactively sputtering chromium metal target with various nitrogen flow rate percentages (fN2) using a closed field unbalanced magnetron sputtering system operated in dc and middle frequency pulsed condition (100 kHz and 50% duty cycle). In this study, plasma examination proved that a large amount of ions with a wide range of ion energies (up to 65 eV and mainly from 10-30 eV region) was identified in the pulsed plasma compared to the low ion flux and energy (0-10 eV) in a dc discharged plasma. The results showed that the phase structure of CrNx coatings was changed from nitrogen doped Cr(N) to pure β-Cr2N, and to a mixture of β-Cr2N and c-CrN and then to pure c-CrN phases with an increase in the fN2 in both dc and pulsed conditions. However, the pulsed CrNx coatings exhibit lower N concentrations than dc CrNx coatings prepared under the same fN2, which leads to the existing of β-Cr2N phase within a wide range of fN2 (30-50%). In comparison with the typical large columnar structure in the dc sputtered coatings, the pulsed CrNx coatings exhibit dramatic microstructure improvements which benefited from the improved plasma density and ion bombardment from the pulsed plasma, where the super dense and nearly equi-axial structures were observed in a wide range of fN2. The microstructure improvements contributed to the enhancements in the hardness and wear resistance of pulsed CrNx coatings. In the pulsed CrNx coatings, the hardness values were above 30 GPa when the fN2 is in the range of 30-40%, which is related to the formation of the β-Cr2N phase. With the formation of a mixture of β-Cr2N and c-CrN phases in the coatings deposited with 40-50% fN2, a low COF of 0.36 and wear rate of 1.66 × 10− 6 mm3 N− 1 m− 1 can be achieved.  相似文献   

13.
Two types of Compositionally Graded Multilayer (CGM) films of Ti1−xAlxN consisting of 21 layers were synthesized by reactive magnetron co-sputtering technique. The first one begins with a layer of Ti0.4Al0.6N from substrate and ends with TiN, whereas exactly a reverse order has been followed in the second one. As deposited CGM films are poly-crystalline with rocksalt structure similar to stoichiometric TiN. Secondary Ion Mass Spectrometry (SIMS) depth profile of the films showed the presence of 21 layers of equal thickness (50 nm) with varying aluminum content in steps. Continuous Multi Cycle (CMC) nanoindentation technique was used to analyze the failure modes of these films. Topographic examination of the indented zone revealed the presence of edge cracks inside and outside the indentation area when the load exceeds beyond 90 mN. The load-displacement profiles of CMC and single indentations exhibited the onset of pop-ins at a depth of ∼200 nm.  相似文献   

14.
CuIn1 − xAlxSe2 (CIAS) thin films were grown by a two stage process. Cu, In and Al layers were sequentially evaporated and subsequently heated with elemental selenium in a quasi-closed graphite box. Different x values (0 ≤ x ≤ 0.6) were obtained by varying the Al and In precursor layers thicknesses. Selenization conditions such as Se amount provided during the selenization process were adjusted in order to optimize the film properties. Polycrystalline CuIn1 − xAlxSe2 thin films with chalcopyrite structure were obtained. Referred to CuInSe2 thin films the lattice parameters, the (112) orientation and the average crystallite size decreased and the band gap energy increased with increasing Al content. To optimize structural properties of the CIAS films a higher Se amount was required as the x value increased. The incorporation of Al changed the thin film morphology towards smaller grain sizes and less compact structures.  相似文献   

15.
Ti1−xSnxO2 nanocrystals were successfully synthesized by using a simple solvothermal route, and its band energy gap broaden and flat band potential can be rationally regulated with increasing x value. Furthermore, Ti1−xSnxO2 nanocrystals were first used as the photoelectrode material for dye-sensitized solar cells. A cell made of Ti1−xSnxO2 (x = 0.3) exhibited the best photovoltaic performance. This is due to its most narrow band gap energies, most negative flat band potential and lowest dark current densities. After the surface of Ti1−xSnxO2 (x = 0.3) electrode was treated with TiCl4 solution, the cell sensitized by a mixed solution of N719 and D131 dye exhibited the best efficiency of 4.64% under the illumination of 1 sun (AM1.5, 100 mW cm−2).  相似文献   

16.
Ions up to ionization state q = 4, emitted from laser produced plasma of Al, Ti, Ti50Al50 and Ti75Al25 targets ablated by Srivastava et al. (2006), are distributed angularly in the form of a cone, and for each ionization state the angular distribution has been shown to follow the cosine power-law: F = Focosnθ. It is found that the value of exponent n of cosnθ distribution function increases with the increase in ionization state. For each target, the value of exponent n of individual ionization states as well as total charge exhibits an excellent linear correlation with the room temperature Debye–Waller thermal parameter B or the mean-square amplitude of the atomic vibrations <u2> of the targets. It is further reported that the FWHM of ion distribution with Gaussian function fitting done by Srivastava et al. (2006) also depends linearly on B rather better than its dependence on the atomic mass of pure metal targets or average atomic mass in the case of their binary alloy targets. The FWHM of ion distribution for Al, Ti, Cu, Mo, W and their alloys Ti25Al75, Ti34Al66, Ti50Al50, Ti75Al25, W60Cu40, W80Cu20, W90Cu10 and Mo70Cu30 laser ablated by Srivastava and Rohr (2005) are also found to have much better correlation with the room temperature Debye–Waller thermal parameter B as compared to the atomic mass of the target.  相似文献   

17.
Chalcopyrite CuIn1−xAlxSe2 (CIAS) thin films with an atomic ratio of Al/(In + Al) = 0.4 were grown by a two-stage process onto soda-lime glass substrates. The selenisation was carried out at different temperatures, ranging from 400 °C to 550 °C, for metallic precursors layers evaporated with two different sequences. The first sequence, C1, was evaporated with the Al as the last layer, while in the second one, C2, the In was the last evaporated element. The optical, structural and morphological characterisations led to the conclusion that the precursors sequence determines the crystallisation pathway, resulting in C1 the best option due to the homogeneity of the depth distribution of the elements. The influence of the selenisation temperature was also studied, finding 540 °C as the optimum one, since it allows to achieve the highest band gap value for the C1 sequence and for the given composition.  相似文献   

18.
The energy distribution of sputtered and ionized metal atoms as well as ions from the sputtering gas is reported for a high power impulse magnetron sputtering (HIPIMS) discharge. High power pulses were applied to a conventional planar circular magnetron Ti target. The peak power on the target surface was 1-2 kW/cm2 with a duty factor of about 0.5%. Time resolved, and time averaged ion energy distributions were recorded with an energy resolving quadrupole mass spectrometer. The ion energy distributions recorded for the HIPIMS discharge are broader with maximum detected energy of 100 eV and contain a larger fraction of highly energetic ions (about 50% with Ei > 20 eV) as compared to a conventional direct current magnetron sputtering discharge. The composition of the ion flux was also determined, and reveals a high metal fraction. During the most intense moment of the discharge, the ionic flux consisted of approximately 50% Ti1+, 24% Ti2+, 23% Ar1+, and 3% Ar2+ ions.  相似文献   

19.
Spectrally selective AlxOy/Pt/AlxOy multilayer absorber coatings were deposited onto corning 1737 glass, Si (111) and copper substrates using electron beam (e-beam) vacuum evaporator at room temperature. The employment of ellipsometric measurements and optical simulation was proposed as an effective method to optimize and deposit multilayer solar absorber coatings. The optical constants (n and k) measured using spectroscopic ellipsometry, showed that both AlxOy layers, which used in the coatings, were dielectric in nature and the Pt layer was semi-transparent. The optimized multilayer coatings exhibited high solar absorptance α ∼ 0.94 ± 0.01 and low thermal emittance ? ∼ 0.06 ± 0.01 at 82 °C. The Rutherford backscattering spectroscopy (RBS) data of AlxOy/Pt/AlxOy multilayer absorber indicated the AlxOy layers present in the coating were nearly stoichiometry. The scanning electron microscope analysis (SEM) result indicated that the average diameter and inter-particles distance of Pt grains were statistically about 146 ± 0.17 nm and 6-10 ± 0.2 nm respectively.  相似文献   

20.
Silicon nitride (SiNx) films were prepared by dual ion beam deposition at room temperature. An assisted N2+ ion beam (current Ib=0-45 mA) was directed to bombard the substrate surface to control the N content x, which saturated at x≈1.36 when Ib?25 mA. The presence of SiN bonds was indicated by the appearance of a Si 2p photoelectron peak at 101.9 eV and an infrared absorption peak at 850 cm−1. As x increases from 0 to 1.36, the hardness, elastic modulus and compressive stress increase from 12.2 to 21.5 GPa, 191 to 256 GPa and 0.52 to 1.4 GPa and the friction coefficient against stainless steel ball decreases from 0.65 to 0.37. The optical band gap increases remarkably with a concomitant drop in electrical conductivity (σRT) by more than 107 times. Ion bombardment induces defects and trap states in the mid-gap, such that the transport mechanism is dominated by hopping of charge carriers through the trap states. Consequently, the activation energy of electrical conductivity is much lower than the optical band gap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号