首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present the design, implementation, and characterization of a single-photon counting module (SPCM) based on large-area avalanche photodiode (APD) and new logic circuit based on TTL integrated circuits (ICs) for generating precise quench and reset delays. Low dark count rate, high linearity of 2 MHz, maximum dynamic range of 12 MHz, and minimum dead time of 35 ns have been achieved with 0.2 mm peltier-cooled single photon avalanche diode (SPAD) [model C30902S-DTC, Perkin Elmer Optoelectronics (PKI)]. The developed module was fiberized and tested for the detection of fluorescently labeled DNA sequences. Detection sensitivity at the level of single fluorescent molecule has been demonstrated.  相似文献   

2.
Avalanche diodes operating in Geiger mode are able to detect single photon events. They can be employed to photon counting and time‐of‐flight estimation. In order to ensure proper operation of these devices, the avalanche current must be rapidly quenched, and, later on, the initial equilibrium must be restored. In this paper, we present an active quenching/recharge circuit specially designed to be integrated in the form of an array of single‐photon avalanche diode (SPAD) detectors. Active quenching and recharge provide benefits like an accurately controllable pulse width and afterpulsing reduction. In addition, this circuit yields one of the lowest reported area occupations and power consumptions. The quenching mechanism employed is based on a positive feedback loop that accelerates quenching right after sensing the avalanche current. We have employed a current starved inverter for the regulation of the hold‐off time, which is more compact than other reported controllable delay implementations. This circuit has been fabricated in a standard 0.18 µm complementary metal‐oxide‐semiconductor (CMOS) technology. The SPAD has a quasi‐circular shape of 12 µm diameter active area. The fill factor is about 11%. The measured time resolution of the detector is 187 ps. The photon‐detection efficiency (PDE) at 540 nm wavelength is about 5% at an excess voltage of 900 mV. The break‐down voltage is 10.3 V. A dark count rate of 19 kHz is measured at room temperature. Worst case post‐layout simulations show a 117 ps quenching and 280 ps restoring times. The dead time can be accurately tuned from 5 to 500 ns. The pulse‐width jitter is below 1.8 ns when dead time is set to 40 ns. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Silicon single-photon avalanche diodes (SPADs) are nowadays a solid-state alternative to photomultiplier tubes (PMTs) in single-photon counting (SPC) and time-correlated single-photon counting (TCSPC) over the visible spectral range up to 1-mum wavelength. SPADs implemented in planar technology compatible with CMOS circuits offer typical advantages of microelectronic devices (small size, ruggedness, low voltage, low power, etc.). Furthermore, they have inherently higher photon detection efficiency, since they do not rely on electron emission in vacuum from a photocathode as do PMTs, but instead on the internal photoelectric effect. However, PMTs offer much wider sensitive area, which greatly simplifies the design of optical systems; they also attain remarkable performance at high counting rate, and offer picosecond timing resolution with microchannel plate models. In order to make SPAD detectors more competitive in a broader range of SPC and TCSPC applications, it is necessary to face several issues in the semiconductor device design and technology. Such issues will be discussed in the context of the two possible approaches to such a challenge: employing a standard industrial high-voltage CMOS technology or developing a dedicated CMOS-compatible technology. Advances recently attained in the development of SPAD detectors will be outlined and discussed with reference to both single-element detectors and integrated detector arrays.  相似文献   

4.
High-Performance InGaAs/InP Single-Photon Avalanche Photodiode   总被引:1,自引:0,他引:1  
In0.53Ga0.47As/InP avalanche photodiodes with very low dark current have been characterized in gated mode for single-photon detection. A 40-mum-diameter single-photon avalanche diodes (SPAD) exhibited high single-photon detection efficiency (SPDE = 45% at 1.31 mum), low dark count rate (DCR = 12 kHz), and low noise-equivalent power (NEP=4.5X 10-17W/Hz1/2 W/Hz) at 200 K and 1.31 mum. A timing resolution of 140 ps was achieved with an SPDE of 45%. In addition, the dark current and DCR of a 4X4 SPAD array are reported.  相似文献   

5.
We report on the first implementation of a single photon avalanche diode (SPAD) in 130 nm complementary metal-oxide-semiconductor (CMOS) technology. The SPAD is fabricated as p+/n-well junction with octagonal shape. A guard ring of p-well around the p+ anode is used to prevent premature discharge. To investigate the dynamics of the new device, both active and passive quenching methods have been used. Single photon detection is achieved by sensing the avalanche using a fast comparator. The SPAD exhibits a maximum photon detection probability of 41% and a typical dark count rate of 100 kHz at room temperature. Thanks to its timing resolution of 144 ps full-width at half-maximum (FWHM), the SPAD has several uses in disparate disciplines, including medical imaging, 3D vision, biophotonics, low-light illumination imaging, etc.  相似文献   

6.
The formation of protein complexes with other proteins and nucleic acids is critical to biological function. Although it is relatively easy to identify the components present in these complexes, it is often difficult to determine their exact stoichiometry and obtain information about the homogeneity of the sample from bulk measurements. We demonstrate the use of single molecule photon-pair correlation spectroscopy to distinguish between discrete numbers of molecules in biological complexes. Fluorescence photon antibunching is observed from a single molecule by employing time-correlated single photon counting in combination with a Hanbury-Brown and Twiss coincidence setup. In addition, pulsed laser excitation and time-tagged time-resolved data collection allow for the measurement of photon arrival times with nanosecond time resolution. The interphoton time distribution between consecutively arriving photons can be calculated and provides a measure of the second-order temporal correlation function. Analysis of this function yields an absolute measure of the number of molecules, N, present in a given complex. It is this ability to measure N that renders this technique powerful for determining stoichiometries in complex biological systems at the single molecule level. We investigate the counting efficiency and statistics of photon antibunching of specifically designed biological samples labeled with multiple copies of the same fluorescent dye and derive conclusions about its use in the analytical evaluation of complex biological samples.  相似文献   

7.
Spectroscopy With Nanostructured Superconducting Single Photon Detectors   总被引:1,自引:0,他引:1  
Superconducting single-photon detectors (SSPDs) are nanostructured devices made from ultrathin superconducting films. They are typically operated at liquid helium temperature and exhibit high detection efficiency, in combination with very low dark counts, fast response time, and extremely low timing jitter, within a broad wavelength range from ultraviolet to mid-infrared (up to 6 mum). SSPDs are very attractive for applications such as fiber-based telecommunication, where single-photon sensitivity and high photon-counting rates are required. We review the current state-of-the-art in the SSPD research and development, and compare the SSPD performance to the best semiconducting avalanche photodiodes and other superconducting photon detectors. Furthermore, we demonstrate that SSPDs can also be successfully implemented in photon-energy-resolving experiments. Our approach is based on the fact that the size of the hotspot, a nonsuperconducting region generated upon photon absorption, is linearly dependent on the photon energy. We introduce a statistical method, where, by measuring the SSPD system detection efficiency at different bias currents, we are able to resolve the wavelength of the incident photons with a resolution of 50 nm.  相似文献   

8.
We propose and analyze a new method for single-photon wavelength up-conversion using optical coupling between a primary infrared (IR) single-photon avalanche diode (SPAD) and a complementary metal oxide semiconductor (CMOS) silicon SPAD, which are fused through a silicon dioxide passivation layer. A primary IR photon induces an avalanche in the IR SPAD. The photons produced by hot-carrier recombination are subsequently sensed by the silicon SPAD, thus, allowing for on-die data processing. Because the devices are fused through their passivation layers, lattice mismatch issues between the semiconductor materials are avoided. We develop a model for calculating the conversion efficiency of the device, and use realistic device parameters to estimate up to 97% upconversion efficiency and 33% system efficiency, limited by the IR detector alone. The new scheme offers a low-cost means to manufacture dense IR-SPAD arrays, while significantly reducing their afterpulsing. We show that this high-speed compact method for upconverting IR photons is feasible and efficient.  相似文献   

9.
Pseudorandom single photon counting is a novel time-resolved optical measurement method, which is advantageous over convention techniques in terms of data-acquisition speed and system cost. As a critical component of the pseudorandom single photon counter, the photon arriving time digitizer should be storage efficient for a high photon counting rate, while maintaining good time accuracy. We report an ultra storage-efficient time digitizer for a pseudorandom single photon counter in this paper, which is based on the asynchronous serial communication and can store the arriving time of every photon in 1-b memory space. In addition, a novel comb-wave modulator is proposed to achieve the dc balance required for asynchronous serial communication. Our prototype implemented on field-programmable gate arrays provides a time resolution of 400 ps. It can register up to 4.2-Giga photon arriving time tags with 1024 $times$ 32-b memory space.   相似文献   

10.
In this paper, we describe the design, characterization, and modeling of InGaAsP/InP avalanche diodes designed for single photon detection at wavelengths of 1.55 and 1.06 mum. Through experimental and theoretical work, we investigate critical performance parameters of these single photon avalanche diodes (SPADs), including dark count rate (DCR), photon detection efficiency (PDE), and afterpulsing. The models developed for the simulation of device performance provide good agreement with experimental results for all parameters studied. For 1.55-mum SPADs, we report the relationship between DCR and PDE for gated mode operation under a variety of operating conditions. We also describe in detail the dependence of afterpulsing effects on numerous operating conditions, and in particular, we demonstrate and explain a universal functional form that describes the dependence of DCR on hold-off time at any temperature. For 1.06-mum SPADs, we present the experimentally determined relationship between DCR and detection efficiency for free-running operation, as well as simulations complementing the experimental data.  相似文献   

11.
We describe the design and characterization of a fiber-coupled double-channel single-photon detection system based on superconducting single-photon detectors (SSPD), and its application for quantum optics experiments on semiconductor nanostructures. When operated at 2-K temperature, the system shows 10% quantum efficiency at 1.3-mum wavelength with dark count rate below 10 counts per second and timing resolution <100 ps. The short recovery time and absence of afterpulsing leads to counting frequencies as high as 40 MHz. Moreover, the low dark count rate allows operation in continuous mode (without gating). These characteristics are very attractive-as compared to InGaAs avalanche photodiodes-for quantum optics experiments at telecommunication wavelengths. We demonstrate the use of the system in time-correlated fluorescence spectroscopy of quantum wells and in the measurement of the intensity correlation function of light emitted by semiconductor quantum dots at 1300 nm.  相似文献   

12.
We report p-i-n type InSb-based high-speed photodetectors grown on GaAs substrate. Electrical and optical properties of photodetectors with active areas ranging from 7.06/spl times/10/sup -6/ cm/sup 2/ to 2.25/spl times/10/sup -4/ cm/sup 2/ measured at 77 K and room temperature. Detectors had high zero-bias differential resistances, and the differential resistance area product was 4.5 /spl Omega/ cm/sup 2/. At 77 K, spectral measurements yielded high responsivity between 3 and 5 /spl mu/m with the cutoff wavelength of 5.33 /spl mu/m. The maximum responsivity for 80-/spl mu/m diameter detectors was 1.00/spl times/10/sup 5/ V/W at 4.35 /spl mu/m while the detectivity was 3.41/spl times/10/sup 9/ cm Hz/sup 1/2//W. High-speed measurements were done at room temperature. An optical parametric oscillator was used to generate picosecond full-width at half-maximum pulses at 2.5 /spl mu/m with the pump at 780 nm. 30-/spl mu/m diameter photodetectors yielded 3-dB bandwidth of 8.5 GHz at 2.5 V bias.  相似文献   

13.
We have developed a prototype of a compact integrated visual sensor which detects direction and velocity of motion on a focal plane in a wide brightness range in real time with a newly devised motion measurement method. The sensor is composed of a lens and a single-chip very large scale integration whose die size is 2 mm /spl times/ 2 mm that was fabricated with a 1.5-/spl mu/ standard CMOS process. The spatial resolution is 10 /spl times/ 2. As a result of performance evaluation of the prototype sensor, it was confirmed that the sensor can detect motion direction and velocity up to an on-chip image velocity of 100 mm/s in a response time of 10 /spl mu/s under an illuminance range between 100 and 100,000 lux. Furthermore, we have demonstrated effectiveness of the visual sensor by applying the sensor to running vehicle detection on a road and blind-corner monitoring at a road junction.  相似文献   

14.
Optical imaging of objects within highly scattering media, such as tissue, requires the detection of ballistic/quasi-ballistic photons through these media. Recent works have used phase/coherence domain or time domain tomography (femtosecond laser pulses) to detect the shortest path photons through scattering media. This work explores an alternative, angular domain imaging, which uses collimation detection capabilities of small acceptance angle devices to extract photons emitted aligned closely to a laser source. It employs a high aspect ratio, micromachined collimating detector array fabricated by high-resolution silicon surface micromachining. Consider a linear collimating array of very high aspect ratio (200: 1) containing 51/spl times/1000 /spl mu/m etched channels with 102-/spl mu/m spacing over a 10-mm silicon width. With precise array alignment to a laser source, unscattered light passes directly through the channels to the charge coupled device detector and the channel walls absorb the scattered light at angles >0.29/spl deg/. Objects within a scattering medium were scanned quickly with a computer-controlled Z axis table. High-resolution images of 100-/spl mu/m-wide lines and spaces were detected at scattered-to-ballistic ratios of 5/spl times/10/sup 5/: 1, with objects located near the middle of the sample seen at even higher levels. At >5/spl times/10/sup 6/: 1 ratios, a uniform background of scattered illumination degrades the image contrast unless recovered by background subtraction. Monte Carlo simulation programs designed to test the angular domain imaging concept showed that the collimator detects the shortest path length photons, as in other optical tomography methods. Furthermore, the collimator acts as an optical filter to remove scattered light while preserving the image resolution. Simulations suggest smaller channels and longer arrays could enhance detection by >100.  相似文献   

15.
Time-resolved space charge (SC) and electroluminescence (EL) measurements are carried out on polyethylene films stressed under ac voltage at industrial frequency to probe injection, trapping and recombination of charge. SC is measured by pulsed electro-acoustic (PEA) technique at each zero voltage cross-over point of the ac voltage, thereby getting rid of the capacitive charge. EL is detected using photon counting techniques with a time resolution down to 50 /spl mu/s. Both SC and EL exhibit a threshold response as a function of the applied voltage. Numerical values of these thresholds are in good correspondence for SC and EL measurements in every tested material. Observations are consistent with a model of bipolar injection with an unbalanced situation in positive and negative charge behavior. It is also shown that different polyethylene materials behave differently relative to the field above which the charge is detected, providing thereby a way to compare the space charge behavior of those materials under ac field.  相似文献   

16.
We report on new approaches toward an implementation of an efficient, room temperature, deterministically polarized, single-photon source (SPS) on demand-a key hardware element for quantum information and quantum communication. Operation of a room temperature SPS is demonstrated via photon antibunching in the fluorescence from single terrylene-dye molecules embedded in a cholesteric liquid crystal host. Using oxygen-depleted liquid crystal hosts, dye-bleaching was avoided over the course of more than 1 h of continuous 532-nm excitation. Liquid crystal hosts (including liquid crystal oligomers/polymers) permit further increase of the efficiency of the source: 1) by aligning the dye molecules along a direction preferable for maximum excitation efficiency; 2) by tuning a one-dimensional (1-D) photonic-band-gap microcavity of planar-aligned cholesteric (chiral nematic) liquid crystal layer to the dye fluorescence band.  相似文献   

17.
Forster resonance energy transfer (FRET) between a donor and an acceptor dye molecule is a common method to study the distances between single molecules in living cells in the nanometer range. Quantitative distance measurements are difficult to obtain in spite of the strong distance dependency of the energy transfer efficiency. One problem is the incomplete fluorescent labeling of the molecules, which leads to the so-called zero-efficiency peak caused by FRET pairs with missing or nonfluorescing acceptor dyes. Other problems occur due to spectral bleed through, direct acceptor excitation, and the difficulty to obtain the quantum efficiencies of the dyes and the detection efficiencies of the corresponding detectors. In order to correct these defects, the donor as well as the acceptor are excited alternatingly using pulsed interleaved excitation. Time-correlated single-photon counting enables the measurement of fluorescence lifetime; hence, the FRET efficiency can also be derived from the decrease of the donor fluorescence lifetime. The universal time-tagged time-resolved data format allows to retrieve all the necessary information from the fluorescence photons detected during the measurement.  相似文献   

18.
We have demonstrated a UV-laser diode with a lasing wavelength of 350.9 nm, which has a GaN-AlGaN multiquantum-well (MQW) active layer and was grown on low-dislocation-density Al/sub 0.18/Ga/sub 0.82/N template. The Al/sub 0.18/Ga/sub 0.82/N template was produced by the hetero-epitaxial lateral overgrowth technology on the low-cost sapphire substrate, and has partially low-dislocation density of approximately 2/spl times/10/sup 7/ cm/sup -2/. The lasing operation under pulsed current injection was achieved with the threshold current density of 7.3 kA/cm/sup 2/ and the operating voltage of 10.4 V.  相似文献   

19.
1.3-/spl mu/m-range GaInNAsSb vertical-cavity surface-emitting lasers (VCSELs) with the doped mirror were investigated. GaInNASb active layers that include a small amount of Sb can be easily grown in a two-dimensional manner as compared with GaInNAs due to the suppression of the formation of three-dimensional growth in MBE growth. The authors obtained the lowest J/sub th/ per well (150 A/cm/sup 2//well) for the edge-emission type lasers due to the high quality of GaInNAsSb quantum wells. Using this material for the active media, the authors accomplished the first continuous wave operation of 1.3-/spl mu/m-range GaInNAsSb VCSELs. For the reduction of the threshold voltage and the differential resistance, they used the doped mirror grown by metal-organic chemical vapor deposition (MOCVD). By three-step growth, they obtained 1.3-/spl mu/m GaInNAs-based VCSELs with the low threshold current density (3.6 kA/cm/sup 2/), the low threshold voltage (1.2 V), and the low differential resistance (60 /spl Omega/) simultaneously for the first time. The back-to-back transmission was carried out up to 5 Gb/s. Further, the uniform operation of 10-ch VCSEL array was demonstrated. The maximum output power of 1 mW was obtained at 20/spl deg/C by changing the reflectivity of the front distributed Bragg reflector mirror. GaInNAsSb VCSELs were demonstrated to be very promising material for realizing the 1.3-/spl mu/m signal light sources, and the usage of the doped mirror grown by MOCVD is the best way for 1.3-/spl mu/m VCSELs.  相似文献   

20.
Electrooptic planar deflector switches with thin-film PLZT active elements   总被引:1,自引:0,他引:1  
First prototypes of electrooptic (EO) planar deflector switches (PDSs) are fabricated with hybrid integration on Si substrates. Planar optical modules, made in silica-on-silicon technology, consist of input and output (I/O) waveguide microlenses facing each other and slab waveguides in between. The modules interconnect the I/O fibers with laterally collimated light beams less than 400 /spl mu/m in width at distances up to 100 mm with losses lower than 3 dB. Thin lead lanthanum zirconium titanate (PLZT) films with prism-shaped electrodes grown on SrTiO/sub 3/ substrates form the deflector elements. The PLZT films are more than 10 /spl mu/m thick with EO coefficients about 40 pm/V. The deflector assembly technology provides chip vertical positioning accuracy better than 1 /spl mu/m. The deflector chips are attached to the optical substrates with thermo-compression flip-chip bonding. The optical power losses of the modules with test silica chips can be as low as 3.6 dB. However, the lowest module losses achieved with PLZT are about 10 dB. The channel-to-channel switching operations are demonstrated at about 40 V and switching times less than 500 ns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号