首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Giliosis is a hallmark of prion disease. A neurotoxic prion peptide (PrP106-126) induces astrocyte proliferation in the presence of microglia. This peptide also directly enhances microglial proliferation in culture. We have investigated this further to understand the method by which factors released by microglia and PrP106-126 work together to enhance astrocyte proliferation. PrP106-126 in the presence of microglia specifically enhanced type 1 astrocyte proliferation but not Type 2. Astrocytes that do not express the prion protein were more sensitive to oxidative stress and the toxicity of cytosine arabinoside. In the presence of cytosine arabinoside, PrP106-126 was toxic to pure astrocyte cultures. Using conditioned medium from microglia we have shown that PrPc-expressing astrocytes proliferate in response to factors released by microglia stimulated by granulocyte/macrophage colony-stimulating factor. This response is enhanced in the presence of PrP106-126. PrPc-deficient astrocytes do not show this response. These results suggest that astrocytes are primed by PrP106-126 to respond more to factors released by proliferating microglia. Astrocytes may proliferate in this system to escape entering the cell suicide pathway.  相似文献   

2.
Neuropathological observations, supported by genetic and biochemical studies, indicate the central role of amyloid-beta protein deposits in the pathogenesis of Alzheimer's disease. In prion-related encephalopathies also, an altered form of prion protein forms amyloid fibrils and accumulates in the brain. In both conditions the amyloid deposition is accompanied by nerve cell loss, the pathogenesis and molecular basis of which are not understood. Synthetic peptides homologous to amyloid-beta protein and its fragments and to prion protein fragments are utilized to investigate the mechanisms of cerebral deposit formation and the role played by these proteins in Alzheimer's disease and prion-related encephalopathies, respectively. Amyloid-beta protein peptides have been shown to be neurotoxic and amyloidogenic under experimental conditions and numerous studies have been performed to clarify the mechanism of neuronal death induced by exposure to these peptides. Peptides homologous to the fragment 106-126 of prion protein, an integral part of all abnormal prion protein isoforms that accumulate in the brain of patients with prion-related encephalopathies, are neurotoxic, fibrillogenic, and have a secondary structure largely composed of beta-sheet and proteinase-resistant properties.  相似文献   

3.
PC12 cells are known to express the prion protein, a normal cell surface glycoprotein. This protein is upregulated in PC12 cells differentiated with nerve growth factor. A neurotoxic prion protein peptide, PrP106-126, is not toxic to PC12 cells alone. PrP106-126 is toxic to PC12 cells co-cultured with microglia and more so to NGF-differentiated PC12 cells. PC12 cells selected for resistance to either copper toxicity or oxidative stress have higher levels of PrP(C) expression. Both PC12 variants are more sensitive to the toxicity of PrP106-126. This suggests that PC12 sensitivity to PrP106-126 toxicity is related to prion protein expression and not to a state of high differentiation induced by NGF. Variants of PC12 cells that are more resistant to copper toxicity have higher levels of anti-oxidant enzymes, superoxide dismutase and glutathione peroxidase. Our results suggest that cells expressing higher levels of PrP(C) have higher resistance to oxidative stress or copper toxicity but are more sensitive to PrP106-126 toxicity. Prion protein expression may be involved in both the metabolism of copper and resistance to oxidative stress. Increased cellular resistance to copper toxicity may be partly related to increased activity of anti-oxidant enzymes.  相似文献   

4.
Recombinant scrapie-like prion protein of 106 amino acids is soluble   总被引:1,自引:0,他引:1  
The N terminus of the scrapie isoform of prion protein (PrPSc) can be truncated without loss of scrapie infectivity and, correspondingly, the truncation of the N terminus of the cellular isoform, PrPC, still permits conversion into PrPSc. To assess whether additional segments of the PrP molecule can be deleted, we previously removed regions of putative secondary structure in PrPC; in the present study we found that deletion of each of the four predicted helices prevented PrPSc formation, as did deletion of the stop transfer effector region and the C178A mutation. Removal of a 36-residue loop between helices 2 and 3 did not prevent formation of protease-resistant PrP; the resulting scrapie-like protein, designated PrPSc106, contained 106 residues after cleavage of an N-terminal signal peptide and a C-terminal sequence for glycolipid anchor addition. Addition of the detergent Sarkosyl to cell lysates solubilized PrPSc106, which retained resistance to digestion by proteinase K. These results suggest that all the regions of proposed secondary structure in PrP are required for PrPSc formation, as is the disulfide bond stabilizing helices 3 and 4. The discovery of PrPSc106 should facilitate structural studies of PrPSc, investigations of the mechanism of PrPSc formation, and the production of PrPSc-specific antibodies.  相似文献   

5.
In vitro experiments revealed that the scrapie prion protein, PrP(Sc), as well as the PrP fragment PrP106-126, and the HIV-1 coat protein gp120 induce apoptosis of rat cortical neurons. The toxic effect displayed by PrP and gp120 could be blocked by NMDA receptor antagonists. Treatment of neuronal cells with PrP106-126 resulted in a drop of intracellular glutathione level and changes in the level of Bcl-2. Evidence is presented that gp120 causes an activation of phospholipase A2, resulting in the increased release of arachidonic acid, which may in turn sensitize the NMDA receptor.  相似文献   

6.
Alzheimer's disease and prion diseases such as Creutzfeldt-Jakob disease are caused by as yet undefined metabolic disturbances of normal cellular proteins, the amyloid precursor protein and the prion protein (PrP). Synthetic fragments of both proteins, beta-amyloid 25-35 (betaA25-35) and PrP106-126, have been shown to be toxic to neurons in culture. Cell death in both cases occurs by apoptosis. Here we show that there are considerable differences in the mechanisms involved. Thus, PrP106-126 is not toxic to cortical cell cultures of PrP knockout mouse neurons whereas betaA25-35 is. The toxicity of both peptides involves Ca2+ uptake through voltage-sensitive Ca2+ channels but only PrP106-126 toxicity involves the activity of NMDA receptors. The toxicity of betaA25-35, but not PrP106-126, is attenuated by the action of forskolin. These results indicate that PrP106-126 and PA25-35 induce neuronal apoptosis through different mechanisms.  相似文献   

7.
Infectious amyloid filaments designated as prion rods or scrapie associated fibrils (SAF) present in brain tissues affected by transmissible spongiform encephalopathies such as Creutzfeldt-Jakob disease (CJD), Gerstmann-Str?ussler-Scheinker disease (GSS) and kuru of humans, and scrapie of sheep. A hydrophobic glycoprotein, PrPSc is a major component of SAF, and is known to be associated with the infectivity of these diseases. Both PrPSc and the normal isoform of this glycoprotein, PrPC are encoded by a single host gene, PrP gene, and the conversion of PrPC to PrPSc is a posttranslational event. Several mutations on the PrP gene are associated with variations of the phenotype and the occurrence in familial CJD and GSS.  相似文献   

8.
The prion protein (PrP) and the amyloid beta (Abeta) precursor protein (APP) are two normal proteins constitutively synthesised in human brain. An altered form of PrP accumulates in Creutzfeldt-Jakob disease, while Abeta is involved in the pathogenesis of Alzheimer's disease. Synthetic fragments of both proteins, PrP106-126 and beta25-35 (beta25-35), have been demonstrated to induce neurodegeneration and microglia activation. This study was undertaken to compare PrP106-126 and beta25-35 capability of activating human resting microglial cells. Our results show that both peptides are able to induce microglial activation and to elicit an increase in [Ca2+]i levels in cells loaded with calcium-green 1. Inhibitors of L-type voltage-sensitive calcium channels (verapamil, nifedipine and diltiazem) prevented the increase in [Ca2+]i concentration as observed after treatment with PrP106-126 and beta25-35, thus indicating a transmembrane calcium influx through these channels. In addition, verapamil abolished the proliferative effect of both PrP106-126 and beta25-35.  相似文献   

9.
An abnormal isoform of the prion protein (PrP) appears to be the agent responsible for transmissible spongiform encephalopathies (TSE). The normal isoform of PrP is host-encoded and expressed in the central nervous system. The recent bovine spongiform encephalopathy (BSE) epidemic in the UK and the incidence of prion-related diseases in other animals could indicate that ruminants are highly susceptible to infection via ingestion of prion-contaminated food. Sequence analysis of PrP gene open reading frames from red deer and camel was carried out to investigate sequence variability of these genes among ruminants.  相似文献   

10.
Conversion of the noninfectious, cellular form of the scrapie prion (PrPC) to the infectious form (PrPSc) is thought to be driven by an alpha-helical to beta-sheet conformational transition. The N-truncated polypeptide PrP27-30, which encompasses residues 90-231 of PrPSc and from which the truncated peptide is derived by limited proteolysis, assembles into amyloid rods that are rich in the beta-sheet conformation. The N-terminal half of PrP27-30, which includes residues 90-145 of PrP (SHa90-145) and contains the two putative alpha-helical domains H1 (PrP109-122) and H2 (PrP129-141), appears to be particularly crucial in the alpha --> beta conversion. To assess their role in this conformational transition, we have analyzed in detail X-ray diffraction patterns from the prion-related peptides A8A (PrP113-120), H1, and SHa90-145. We used iterative Fourier synthesis with beta-silk as an initial model for assigning phases. For H1, the lyophilized and acetonitrile-solubilized/dehydrated specimens gave two different electron density maps. The former showed that the beta-sheets were composed of small side chains as in A8A. The latter showed two types of beta-sheets having smaller and larger side chains, suggesting a turn. Such a turn was not observed in the lyophilized H1, indicating that the internal turn in H1 depends on the physical-chemical environment. In SHa90-145, the beta-chains are assembled in approximately 40 A-wide crystal domains (termed beta-crystallites), and the electron density maps of these crystallites showed evidence for turns within both the H1 and H2 domains. The molecular folding of H1-H2 is compared here with the recent NMR solution structure of recombinant hamster prion, and the effect of pH on the conformational change is discussed. The most compact structure based on the X-ray diffraction analysis showed that the N-terminal, smaller residues of H2 fold back and are hydrogen-bonded with the C-terminal, smaller residues of H1. Similar folding is observed in the NMR solution structure. Comparison of the NMR structures at different pH with the X-ray diffraction results suggests that histidine and lysine residues in the N-terminal sequence of PrP may figure in the alpha --> beta structure transition of PrP.  相似文献   

11.
Molecular mechanisms associated with apoptosis in pancreas remain largely unknown. Clusterin mRNA is induced in several tissues in response to most apoptotic stimuli. In these tissues, clusterin has an antiapoptotic activity. The aim of this work was to test whether clusterin, which is not expressed in normal pancreas, was induced in pancreas during pancreatitis and pancreatic development. Clusterin mRNA levels were strongly increased 6 h after pancreatitis induction. Maximal expression happened between 24-48 h and decreased progressively to undetectable levels at day 5. Clusterin mRNA was expressed with similar intensity in oedematous caerulein-induced pancreatitis and in response to various degrees of necrohaemorrhagic taurocholate-induced pancreatitis, indicating a maximal gene activity in all types of pancreatitis; in situ hybridization showed that the acinar cells and some ducts expressed clusterin mRNA. A single band of about 35-38 kDa was detected by western blot in pancreatic homogenates and in pancreatic juice from rats with acute pancreatitis, but not from control rats. Clusterin mRNA expression was strong in late fetal life and remains high until day 11 post-partum, then decreased progressively with a minimum from 35 to 90 days post-partum. Clusterin mRNA levels were strongly induced in pancreatic acinar AR4-2J cells in response to various apoptotic stimuli (i.e., cycloheximide, staurosporine, ceramide and H2O2) but not with interleukin (IL)-1, IL-4 or IL-6 or heat shock, which do not induce apoptosis in AR4-2J cells. In conclusion, we demonstrated that clusterin is synthesized and released by the pancreas. Its strong expression during acute pancreatitis suggests its involvement in the pancreatic response to injury. Clusterin is also induced during pancreatic development. Because these situations are associated with apoptosis and clusterin was shown to protect against apoptosis, we speculate that clusterin could be involved in the control of acinar cell apoptosis.  相似文献   

12.
Prions are thought to consist of infectious proteins that cause transmissible spongiform encephalopathies. According to overwhelming evidence, the pathogenic prion protein PrPSc converts its host encoded isoform PrPC into insoluble aggregates of PrPSc, concomitant with pathological modifications (for review, see refs. 1-3). Although the physiological role of PrPC is poorly understood, studies with PrP knockout mice demonstrated that PrPC is required for the development of prion diseases. Using the yeast two-hybrid technology in Saccharomyces cerevisiae, we identified the 37-kDa laminin receptor precursor (LRP) as interacting with the cellular prion protein PrPC. Mapping analysis of the LRP-PrP interaction site in S. cerevisiae revealed that PrP and laminin share the same binding domain (amino acids 161 to 180) on LRP. The LRP-PrP interaction was confirmed in vivo in insect (Sf9) and mammalian cells (COS-7). The LRP level was increased in scrapie-infected murine N2a cells and in brain and spleen of scrapie-infected mice. In contrast, the LRP concentration was not significantly altered in these organs from mice infected with the bovine spongiform encephalopathic agent (BSE), which have a lower PrPSc accumulation. LRP levels, however, were dramatically increased in brain and pancreas, slightly increased in the spleen and not altered in the liver of crapie-infected hamsters. These data show that enhanced LRP concentrations are correlated with PrPSc accumulation in organs from mice and hamsters. The laminin receptor precursor, which is highly conserved among mammals and is located on the cell surface, may act as a receptor or co-receptor for the prion protein on mammalian cells.  相似文献   

13.
The anti-apoptotic proteins bcl-2 and bcl-xL seem to exhibit strictly opposite expression patterns in normal lymphoid cell differentiation stages, with bcl-2 low and bxl-xL high in immature and mature proliferating cells, the reverse being the case in recirculating quiescent cells. However, it is in fact not known whether recirculating memory cells are bcl-xL low or high. We analyzed memory (immunoglobulin isotype-switched) B cells in human peripheral blood, which were small lymphocytes in the G0 phase of the cell cycle, but proliferated better than naive B cells in response to Staphylococcus aureus Cowan I. Ex vivo these cells co-expressed bcl-2 together with bcl-xL mRNA and protein at high levels. The mcl-1 mRNA level was low. The bcl-xL mRNA level decreased during culture in medium containing fetal calf serum, which implies that it is maintained in vivo by continuous or frequent, non-mitogenic signal(s). The high bcl-xL expression of memory B cells may be relevant with regard to their longevity and/or their capacity to undergo an accelerated secondary type immune response.  相似文献   

14.
There is increasing evidence to suggest that opioid peptides may have widespread effects as regulators of growth. To evaluate the hypothesis that endogenous opioids control cellular proliferation during neural development, we have used in situ hybridization to examine opioid peptide and receptor mRNA expression in neuroepithelial zones of fetal rat brain and spinal cord. Our data show that proenkephalin mRNA is widely expressed in forebrain germinal zones and choroid plexus during the second half of gestation. In contrast, prodynorphin mRNA expression is restricted to the periventricular region of the ventral spinal cord. Little mu or delta receptor mRNA expression was detected in any regions of neuronal proliferation prior to birth. However, kappa receptor mRNA is widely expressed in hindbrain germinal zones during the 3rd week of gestation. Our present findings support the hypothesis that endogenous opioids may regulate proliferation of both neuronal and non-neuronal cells during central nervous system development. Given the segregated expression of proenkephalin mRNA in forebrain neuroepithelium and kappa receptor mRNA within hindbrain, different opioid mechanisms may regulate cell division in rostral and caudal brain regions.  相似文献   

15.
The prion, the transmissible agent that causes spongiform encephalopathies such as scrapie, bovine spongiform encephalopathy and Creutzfeldt-Jakob disease, is believed to be devoid of nucleic acid and to be identical to PrPSc (prion protein: scrapie form), a modified form of the normal host protein PrPC (prion protein: cellular form) which is encoded by the single copy gene Prnp. The 'protein only' hypothesis proposes that PrPSc, when introduced into a normal host, causes the conversion of PrPC into PrPSc; it therefore predicts that an animal devoid of PrPC should be resistant to prion diseases. The authors generated homozygous Prnp(o/o) ('PrP knockout') mice and showed that, after inoculation with prions, these mice remained free from scrapie for at least two years while wild-type controls all died within six months. There was no propagation of prions in the Prnp(o/o) animals. Surprisingly, heterozygous Prnp(o/+) mice, which express PrPC at about half the normal level, also showed enhanced resistance to scrapie despite high levels of infectious agent and PrPSc in the brain at an early stage. After introduction of murine PrP transgenes, Prnp(o/o) mice became highly susceptible to mouse--but not to hamster--prions, while the insertion of Syrian hamster PrP transgenes rendered the mice susceptible to hamster prions but much less susceptible to mouse prions. These complementation experiments enabled the application of reverse genetics. The authors prepared animals transgenic for genes encoding PrP with amino terminal deletions of various lengths and found that PrP that lacks 48 amino proximal amino acids (which comprise four of the five octa repeats of PrP) is still biologically active.  相似文献   

16.
Transmissible spongiform encephalopathies (TSEs) are lethal, infectious disorders of the mammalian nervous system. A TSE hallmark is the conversion of the cellular protein PrPC to disease-associated PrPSc (named for scrapie, the first known TSE). PrPC is protease-sensitive, monomeric, detergent soluble, and primarily alpha-helical; PrPSc is protease-resistant, polymerized, detergent insoluble, and rich in beta-sheet. The "protein-only" hypothesis posits that PrPSc is the infectious TSE agent that directly converts host-encoded PrPC to fresh PrPSc, harming neurons and creating new agents of infection. To gain insight on the conformational transitions of PrP, we tested the ability of several protein chaperones, which supervise the conformational transitions of proteins in diverse ways, to affect conversion of PrPC to its protease-resistant state. None affected conversion in the absence of pre-existing PrPSc. In its presence, only two, GroEL and Hsp104 (heat shock protein 104), significantly affected conversion. Both promoted it, but the reaction characteristics of conversions with the two chaperones were distinct. In contrast, chemical chaperones inhibited conversion. Our findings provide new mechanistic insights into nature of PrP conversions, and provide a new set of tools for studying the process underlying TSE pathogenesis.  相似文献   

17.
Conversion of the cellular prion protein (PrPC) into the pathogenic isoform (PrPSc) is the fundamental event underlying transmission and pathogenesis of prion diseases. To control the expression of PrPC in transgenic (Tg) mice, we used a tetracycline controlled transactivator (tTA) driven by the PrP gene control elements and a tTA-responsive promoter linked to a PrP gene [Gossen, M. and Bujard, H. (1992) Proc. Natl. Acad. Sci. USA 89, 5547-5551]. Adult Tg mice showed no deleterious effects upon repression of PrPC expression (>90%) by oral doxycycline, but the mice developed progressive ataxia at approximately 50 days after inoculation with prions unless maintained on doxycycline. Although Tg mice on doxycycline accumulated low levels of PrPSc, they showed no neurologic dysfunction, indicating that low levels of PrPSc can be tolerated. Use of the tTA system to control PrP expression allowed production of Tg mice with high levels of PrP that otherwise cause many embryonic and neonatal deaths. Measurement of PrPSc clearance in Tg mice should be possible, facilitating the development of pharmacotherapeutics.  相似文献   

18.
We have previously reported upregulation of clusterin at the time of islet cell regeneration after beta-cell injury. This led us to speculate that clusterin might be involved in the neogenic regeneration of the pancreas. Clusterin expression was examined throughout the process of pancreatic neogenesis in pancreatectomized rats. For in vitro analysis, duct cells were isolated from the rat pancreas and clusterin cDNA was transfected for its overexpression. Clusterin and its mRNA increased significantly in the early phase of regeneration, particularly at 1-3 days after pancreatectomy. Clusterin was transiently expressed in the differentiating acinar cells but faded afterwards. Interestingly, these clusterin cells were negative for PCNA (proliferating cell nuclear antigen), whereas most epithelial cells in ductules in the regenerating tissue showed extensive proliferative activity. Clusterin expression was also detected in some endocrine cells of the regenerating tissue. Transfection of clusterin cDNA into primary cultured duct cells resulted in a 2.5-fold increase in cell proliferation and induced transformation of non-differentiated duct cells into differentiated cells displaying cytokeratin immunoreactivity. Taken together, these results suggest that clusterin may play essential roles in the neogenic regeneration of pancreatic tissue by stimulating proliferation and differentiation of duct cells.  相似文献   

19.
The fundamental event in prion disease is thought to be the posttranslational conversion of the cellular prion protein (PrPC) into a pathogenic isoform (PrPSc). The occurrence of PrPC on the cell surface and PrPSc in amyloid plaques in situ or in aggregates following purification complicates the study of the molecular events that underlie the disease process. Monoclonal antibodies are highly sensitive probes of protein conformation which can be used under these conditions. Here, we report the rescue of a diverse panel of 19 PrP-specific recombinant monoclonal antibodies from phage display libraries prepared from PrP deficient (Prnp0/0) mice immunized with infectious prions either in the form of rods or PrP 27-30 dispersed into liposomes. The antibodies recognize a number of distinct linear and discontinuous epitopes that are presented to a varying degree on different PrP preparations. The epitope reactivity of the recombinant PrP(90-231) molecule was almost indistinguishable from that of PrPC on the cell surface, validating the importance of detailed structural studies on the recombinant molecule. Only one epitope region at the C terminus of PrP was well presented on both PrPC and PrPSc, while epitopes associated with most of the antibodies in the panel were present on PrPC but absent from PrPSc.  相似文献   

20.
We have examined the glial cell response, the possible expression of compounds associated with the complement cascade, including the putative complement inhibitor clusterin, and their cellular association during Wallerian degeneration in the central nervous system. Examination of the proliferation pattern revealed an overall greater mitotic activity after rhizotomy, an exclusive involvement of microglia in this proliferation after peripheral nerve injury, but, in addition, a small fraction of proliferating astrocytes after rhizotomy. Immunostaining with the phagocytic cell marker ED1 gradually became very prominent after rhizotomy, possibly reflecting a response to the extensive nerve fiber disintegration. Lumbar dorsal rhizotomy did not induce endogenous immunoglobulin G (IgG) deposition or complement expression in the spinal cord dorsal horn, dorsal funiculus, or gracile nucleus. This is in marked contrast to the situation after peripheral nerve injury, which appears to activate the entire complement cascade in the vicinity of the central sensory processes. Clusterin, a multifunctional protein with complement inhibitory effects, was markedly upregulated in the dorsal funiculus in astrocytes. In addition, there was an intense induction of clusterin expression in the degenerating white matter in oligodendrocytes, possibly reflecting a degeneration process in these cells. The findings suggest that 1) complement expression by microglial cells is intimately associated with IgG deposition; 2) axotomized neuronal perikarya, but not degenerating central fibers, undergo changes which induce such deposition; and 3) clusterin is not related to complement expression following neuronal injury but participates in regulating the state of oligodendrocytes during Wallerian degeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号