首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
首先利用木本类(硬木和软木)和禾本类不同生物质原料制备有机酸溶木质素,发现木本木质素的碳、氢元素含量和高位热值高于禾本木质素,软木木质素中β-O-4、β-β和β-5键含量高于硬木和禾本木质素。然后,通过不同种类木质素在乙醇/异丙醇中氢解实验发现,木本木质素氢解得到产物产率高于禾本木质素,其中杉木木质素的单酚产率最高,约为8.07%(质量分数)。此外,木本木质素解聚产生的单酚化合物以无侧链和三元碳侧链为主,而禾本木质素以二元碳侧链化合物为主。  相似文献   

2.
化石资源日益减少和使用化石资源带来的气候与环境问题促使人们将目光转向可再生的生物质资源。由生物质资源制备高附加值的化学品已成为国内外的研究热点。通过催化氢解将纤维素转化为多元醇化学品是一种可行的手段。本文总结了由纤维素氢解制备多元醇的最新研究进展,重点介绍了纤维素转化为山梨醇/甘露醇、异山梨醇和小分子多元醇(丙二醇和乙二醇)的催化剂体系以及可能的转化途径。最后分析了该领域存在的问题和今后的研究趋势。  相似文献   

3.
木质素是自然界中丰富的可再生芳香碳资源,其解聚得到的单体可以作为重要的化工原料。以蒽醌-2-羧酸作为光催化剂,在硝基苯存在和LED光源照射下,5 h内木质素模型化合物中β-O-4键有80%的转化率。对于木质素β-O-4多聚体,该体系也表现出了光催化活性,将蒽醌-2-羧酸负载在非均相载体上,在光催化降解中也可以获得77%的底物转化率。该反应涉及了木质素β-O-4中Cα—Cβ键和Cβ—O键的断裂,在催化剂的作用下,首先发生Cα—OH的脱氢,随后经过分子内的断键和重新成键生成苯甲醛和愈创木酚。本研究加深了对光催化木质素氧化过程中C—C键断裂过程的认识,有助于理解木质素的解聚机制。  相似文献   

4.
甘油催化氢解制备丙二醇研究进展   总被引:1,自引:0,他引:1  
王娟  姚志龙  吴巍 《中外能源》2010,15(3):72-79
有效利用生产生物柴油副产的甘油将有助于提高生物柴油产业的经济性。甘油催化氢解的反应机理比较复杂,由于反应条件、催化剂的不同,甘油氢解制丙二醇的机理也存在一定差异。但无论反应按哪种机理进行,都会得到1,2-丙二醇;而在碱性条件下反应时很难得到1,3-丙二醇;在同时产生1,2-丙二醇和1,3-丙二醇的情况下,很难判断哪些因素对它们的选择性具有决定性作用。典型的甘油催化氢解一般会采取液相加氢工艺,但通过增大氢油比和缩短停留时间,甘油气相加氢工艺也可以实现。此外,通过多步骤或利用超临界溶剂、保护基团等也可实现甘油氢解。甘油催化氢解采用的催化剂体系包括均相和非均相催化剂,大部分是含铜、锌等副族金属元素和第Ⅷ族金属元素如镍、钌、铂、钯和铑的催化剂。均相催化剂对1,3-丙二醇有很高的选择性,最高可以达到1,3-丙二醇/1,2-丙二醇=2;非均相催化剂对1,3-丙二醇没有选择性,主要得到1,2-丙二醇和1,3-丙二醇的混合物,且对1,2-丙二醇的选择性随催化剂种类的不同而有所差异。对甘油催化氢解制取1,2-丙二醇效果最好的是含铜的催化剂。要实现甘油催化氢解制备丙二醇的工业化生产,还需进一步探索甘油催化氢解的机理,探索助剂效应,改进催化剂体系,或者从反应工程的角度进行改进,提高催化剂的选择性,达到对1,2-丙二醇或1,3-丙二醇的高的选择性和产率。  相似文献   

5.
针对催化热解中目标产物单环芳烃收率低、催化剂易失活等问题,制备4种金属改性分子筛催化剂,并提出结合金属改性和核壳结构的新型催化剂制备手段.将改性催化剂应用于酶解木质素催化热解制取液体燃料中,Fe改性的分子筛催化剂具有较高单环芳烃选择性和MAHs/PAHs比值,以其为微孔内核进行介孔壳层的包覆能够提高反应物和产物的扩散速率.在金属改性结合核壳结构催化剂的制备中,金属负载与介孔包覆顺序对于液体产物具有不同调控机制.研究结果表明,“先负载,后包覆”的催化剂能够降低多环芳烃选择性,提高MAHs/PAHs至2.38.“先包覆,后负载”的制备方法保留了酸性位点优势,促进芳构化反应和烷基化反应,单环芳烃质量收率提升至8.06%.  相似文献   

6.
采用离子液体提取尾叶桉木木质素,以甲苯酚为酚化剂,浓硫酸为催化剂,对木质素进行酚化改性,再以NaOH为催化剂,将酚化木质素与环氧氯丙烷进行环氧化反应,合成木质素基环氧树脂.实验表明:当离子液体为[ChCl][Gly]、温度为90℃、时间为12 h、液固比为20:1时,木质素的提取率达到93.73%,再生木质素纯度为96...  相似文献   

7.
超滤黑液木质素催化热解特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以从造纸黑液中超滤提纯的木质素为研究对象,利用红外光谱(FT-IR)和凝胶渗透色谱(GPC)研究超滤木质素的物化特性,选取ZnO、CuO、纳米Al2O3、Al2O3、CaO、TiO2和CaCO3作催化剂,在固定床550℃下进行木质素原位催化热解实验。结果表明,多级超滤工艺能有效脱除黑液中的杂质,得到纯净、多分散度较低的木质素。纳米Al2O3和TiO2对一元酚和愈创木酚有较高的选择性;CuO可促进焦炭裂解,产生较多的CO2和CO;ZnO、CaO和Al2O3能促进H2的生成;CaCO3可提高CO的产率。  相似文献   

8.
在N_2的气氛下,以10℃/min、20℃/min、30℃/min、40℃/min和50℃/min的升温速率分别对黑液木质素焦进行热重实验,研究升温速率对其热解反应的影响。结果表明,黑液木质素焦的热解过程主要分为三个阶段:180~380℃、380~570℃以及570~800℃;TG和DTG曲线随着升温速率增大逐渐向高温侧偏移,高升温速率不利于热解反应进行;采用Coats-Redfern法、Ozawa法和Kissinger法求得活化能分别为93~251 kJ/mol、111~122 kJ/mol和110~134 kJ/mol。  相似文献   

9.
安庆石化用氢优化分析与建议   总被引:1,自引:0,他引:1  
肖兵 《中外能源》2011,16(2):86-89
在对氢气需求量统计和各种加工方案分析的基础上,提出安庆石化用氢方案:新建装置制氢工艺应采用轻烃蒸汽转化法,制氢规模宜定为4.0×104t/a;顶出炼厂气作制氢原料;确定分级用氢原则,全厂设置高、低两个氢气管网,氢气提纯装置PSA-1出口供低压氢气管网,PSA-2和PSA-3出口供高压氢气管网,低压氢气管网压力按1.5~1.7MPa设置,高压氢气管网压力按2.0MPa设置,重整氢气进PSA-2。低压氢气管网满足蜡油加氢、柴油加氢Ⅲ和丁辛醇装置用氢需要,高压氢气管网供氢满足重油加氢装置需要,PSA-2重整尾气送制氢装置作原料。制氢装置原料选择和运转模式为:煤气化装置正常供氢期间,PSA-2重整尾气全部进制氢装置制氢;煤气化装置停工时,停苯乙烯装置,顶出焦化干气经原焦化干气制氢预处理设施加氢处理后,与PSA-2重整尾气共同作为制氢原料,以保证全厂氢气供应;制氢装置原料紧缺时,使用石脑油(或重整拔头油)作为补充原料。  相似文献   

10.
通过催化降解的方法,可以有效将木质素转为高附加值的单酚类化学品。文章首先以酸析法从蔗渣碱法造纸黑液中回收工业蔗渣木质素(IBL),接着采用Cs_(2.5)H_(0.5)PW_(12)O_(40)为催化剂,在250℃乙醇-水体系中反应180 min催化IBL降解,可得到4-乙基苯酚(8.1%),4-乙烯基苯酚(1.3%),3-甲基-4-乙基苯酚(1.9%),4-异丙基-苯酚(3.5%)和2,6-二甲氧基苯酚(7.8%)5种主要酚类化合物。以主要产物4-乙基苯酚收率为指标,考察了催化剂取代度、比表面积和孔结构、反应温度、反应时间等条件对催化效率的影响。结果表明,通过多孔炭负载可以有效提高磷钨酸铯的催化效率,以比表面积、孔体积和孔径分别为0.340 cm~3/g,5.888 nm和341.783 m~2的活性炭负载型磷钨酸铯(Cs_(2.5)H_(0.5)PW_(12)O_(40)/C2)为催化剂,在350℃乙醇-水(v/v=9/1)体系中反应120 min催化IBL降解,4-乙基苯酚的收率最高可达12.36%。  相似文献   

11.
本研究以NaOH-乙醇水溶液为溶剂体系对竹木质素进行热降解,主要考察了NaOH浓度、反应温度、反应时间、乙醇用量等条件对竹木质素降解转化为酚类化合物的影响。通过GC-MS及FT-IR对降解产物进行分析检测,得出最佳反应条件为:竹木质素5 g,NaOH浓度(基于乙醇水溶液)20 g/L,乙醇10 mL,反应时间2 h,反应温度240℃。在此条件下,降解产物中总的酚类化合物的相对峰面积为73.88%,残渣率为30.67%。竹木质素的降解主要产物是酚类化合物:苯酚(17.98%)、2-甲氧基苯酚(16.49%)及1,2-苯二酚(10.03%)。与现有文献相比,本文竹木质素在碱性乙醇溶剂体系中降解能够获得较高产量的酚类化合物,有望实现竹木质素的高值化利用。  相似文献   

12.
木质素是自然界重要的天然酚类化合物,在一定条件下可以部分替代苯酚参与甲醛的加成缩聚反应,但木质素极低的反应活性限制了其工业化应用。随着化石资源的日趋枯竭,木质素在酚醛树脂中的应用受到越来越多的重视。文章综述了目前木质素改性热塑性酚醛树脂的主要方式,以及木质素在酚醛模塑料中的应用情况,并对其应用前景进行了展望。  相似文献   

13.
刘玥  石岩  迟铭书 《新能源进展》2020,8(6):518-523
木质素作为世界上资源量仅次于纤维素的有机物,是一种尚未得到合理利用的可再生资源,具有较高的热值,是由三种醇单体形成的一种复杂酚类聚合物,这使得通过化学手段对其进行碳化成为可能。在现有的处理方法中,水热碳化(HTC)作为一种简单、高效的产碳方法,具有成本较低且不易造成污染等特点。本文综述了目前国内外以木质素及其模型化合物为原料进行水热碳化的研究现状,讨论了不同反应条件对碳化结果的影响,并对其未来发展方向进行了展望。  相似文献   

14.
基于热红联用分析的木质素热裂解动力学研究   总被引:20,自引:0,他引:20  
利用热重红外联用系统对生物质的主要组分木质素进行了热裂解动力学研究.在用红外固体压片法研究木质素结构的基础上得到不同升温速率下木质素热裂解的热重曲线.实验结果表明,随着升温速率的增加,各个阶段的起始和终止温度向高温侧轻微移动,主反应区间增加;计算得到的木质素两阶段活化能分别为58.41 kJ/mol和119.98 kJ/mol.与纤维素热解气的联机红外分析谱图相比可知木质素热解过程中气体析出机理复杂,主要生成CO、CH4和呋喃等产物.  相似文献   

15.
生物质与塑料共热解是一种非常有效的生物质利用方法之一,但由于生物质结构的复杂性,共热解过程的机理尚不明晰。木质素是生物质的主要组分之一,本文通过热重-质谱联用仪和裂解器-气相色谱质谱仪研究其与高密度聚乙烯共热解过程,获取共热解特性及热解产物分布特性,以揭示共热解过程机制。结果显示,木质素与高密度聚乙烯共热解过程存在协同效应,使得热解失重速率加快,热解固体残渣含量减少。共热解过程有利于CH4、H2O、CO和C2H4的生成,抑制CO2的生成。同时,酚类、醇类和糖类等含氧化合物产量减少,烷烃和烯烃类化合物产量增加。结果表明,共热解过程会发生氢转移现象,氢与木质素衍生热解产物结合发生反应,从而抑制含氧化合物的生成,促进烷烃类和烯烃类化合物生成。  相似文献   

16.
木质素是由三种苯基丙烷单元通过醚键和C—C键相互偶联形成的复杂高分子聚合物,并且与碳水化合物交联形成复杂的结构,其在自然界中的储量仅次于纤维素,传统木质素利用方式效率低,资源浪费严重。热解是一种重要的木质素高效转化利用技术,木质素复杂的结构特性会显著影响其热解过程和产物分布。本文综述了木质素结构和热解机理,概述了不同原料和不同提取方式木质素的热解特性,最后对木质素热解转化进行了展望,为木质素的资源化利用提供理论基础。  相似文献   

17.
A unique Mo/SEP catalyst using low-cost and available sepiolite as support was prepared by wet impregnation method. All catalyst performances of the Mo/SEP catalysts were studied in process of lignin catalytic depolymerization (LCD) under supercritical ethanol with nitrogen pressure, and the effects of reaction temperatures and reaction time on LCD process were also investigated. X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy techniques were used to characterize the structural characteristics of the fresh and spent catalysts, and gas chromatography-mass spectrometry (GC-MS) was employed to analyze the compositions of the obtained liquid product. The results indicated that Mo/SEP catalyst had unique performance for LCD, and the highest soluble fraction yield of petroleum ether of 47.6% and yield of liquid product of 63.5% were obtained with constantly reacting for 4 hours at 290°C and 6.5 MPa N2. In addition, relevant characterizations demonstrated that the reaction temperature could cause the phase transfer of catalyst and change of Mo6+ to Mo5+ species. The conversion degree of Mo6+ to Mo5+ was the major reason responding for the catalytic performance of Mo/SEP catalyst during LCD process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号