首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
隧道开挖后形成的压力拱是随着围岩的渐进性破坏而动态发展的。以毛洞情况下隧道的最终状态为依据将动态压力拱分为稳定无塌落拱、稳定有塌落拱和不稳定无塌落拱三类,将围岩压力拱的动态发展分为原始应力状态、雏形压力拱状态、初始压力拱状态、塌落压力拱状态4个典型的时间段,从而对动态压力拱理论进行了完善。对初始压力拱和塌落压力拱的拱体厚度进行了理论推导,从理论上揭示了围岩压力拱动态发展的影响因素。通过实例计算得到了隧道埋深、侧向土压力系数与初始压力拱拱体厚度的关系以及塌落压力拱随塌落高度发展的动态演化规律。结果表明:初始压力拱拱体厚度与侧压力系数呈线性负相关,与隧道埋深呈正相关;侧压力系数对初始压力拱拱体厚度的影响随隧道埋深的增加而增大;随着塌落高度的增加,围岩压力拱范围先增大后逐渐趋于稳定,而拱体厚度则先增大后减小;若塌方在拱体厚度达到最大时仍无法稳定,则最终会发展为塌穿型塌方。  相似文献   

2.
压力拱是抽象的但又客观存在,是隧道围岩进行力学性能自我调节的载体,充分利用好拱效应能使工程更加安全经济.针对压力拱拱体范围的确定方法,主要从理论分析、数值模拟、模型试验三个方面,以及新方法和对前人的研究成果进行了收集整理、归纳总结及综合分析,便于了解隧道工程压力拱及拱体范围确定方法的提出、完善及发展.  相似文献   

3.
基于流固耦合理论的连拱隧道围岩稳定性分析   总被引:1,自引:0,他引:1  
以湖南省常吉高速公路新修建的一些大跨度连拱隧道为工程背景,基于流固耦合分析理论,利用快速拉格朗日有限差分法对连拱隧道围岩稳定性进行分析。主要考虑流固耦合效应作用时,围岩级别、隧道埋深、地下水位以及施工工法和初期支护等因素对围岩稳定性的综合影响,得到Ⅲ,Ⅳ,Ⅴ级围岩在各种情况下隧道开挖后围岩最大主应力、洞周位移、塑性区、孔隙水压力分布以及喷锚支护受力特征等结果,探讨连拱隧道开挖渗流机制,并分析深埋连拱隧道开挖后的孔隙水压力场分布特征。研究结果直接指导该高速公路二期工程中的隧道防排水施工和支护措施的改进提高,为富水地层条件下的隧道工程开挖设计提供一定的理论参考。  相似文献   

4.
利用现场监测结果反分析隧道结构受力特性已逐渐成为隧道动态施工和稳定性评价最常用的方法之一;在总结隧道受力分析发展历程的基础上,通过对近20年来39座隧道71个监测断面围岩压力的统计分析,研究隧道围岩压力的总体分布特征及其与隧道岩性、施工方法、隧道埋深、隧道跨度等因素的关系,讨论隧道支护结构的受力规律及围岩压力的时空分布特征;总体而言,围岩压力值分布范围大致为15~600 kPa;围岩压力随隧道埋深增大而增大,埋深越大,围岩压力分布越离散;且围岩压力沿洞周呈拱肩→拱腰→拱顶→拱脚→仰拱逐渐减小的分布规律;围岩压力有明显的时间效应,一般在隧道开挖后40天左右趋于稳定。研究结论可作为完善隧道结构支护方法及分析围岩压力作用机制的参考。  相似文献   

5.
软弱破碎深埋隧道围岩渐进性破坏试验研究   总被引:2,自引:0,他引:2  
 利用相似模型试验对深埋隧道围岩渐进性破坏特征进行研究。相似模型针对大断面、软弱破碎、深埋铁路隧道围岩。模型材料选择重晶石、石英砂、凡士林按一定比例配制而成。采用自主研发的平面应变模型试验台、气囊加载装置和千斤顶加载装置作为加载系统。利用白光散斑方法监测系统监测加载过程中隧道围岩表面应变场演化规律,利用压力盒监测加载过程中围岩压力的变化。试验结果分析表明:(1) 隧道拱腰处在逐渐加载过程中形成剪切的V型楔形体,拱顶没有破坏但产生较大拉伸变形。拱腰处的剪切破坏范围逐渐扩大到拱顶,最终在拱顶上方形成剪切的拱形裂纹。(2) 拱腰近洞壁一定范围内径向压力先增加后减小说明该处存在松动区,围岩深处存在切向压力升高区对应压力拱拱体;拱顶上方近洞壁存在径向压力减小区域对应松动区,围岩深处最大主应力方向发生偏转,该处对应压力拱位置;深埋隧道围岩受力分区特征为松动区–压力拱拱体–原岩应力区。  相似文献   

6.
连拱隧道围岩压力计算方法与动态施工力学行为研究   总被引:1,自引:0,他引:1  
由于双连拱隧道的多分部开挖支护的结构荷载转换过程多,围岩应力变化和围岩与结构相互作用关系复杂,目前在设计、施工中仍然存在一些问题:(1) 勘察设计围岩分类与施工揭露实际围岩级别常有差异,并难以实现及时变更.(2) 尚无满足连拱隧道特点的围岩压力理论,特别是在浅埋偏压条件下围岩荷载估计偏差较大.(3) 施工中经常出现支护失效、衬砌裂缝及渗漏泄水等工程安全、质量问题.针对连拱隧道中的问题,进行围岩压力计算方法和动态施工力学行为研究,主要研究成果有:(1) 对于连拱隧道,围岩塑性区受中墙及施工方案影响较小,主要与最终开挖跨度有关.在计算荷载时要考虑最不利工况,连拱隧道坑道宽度取整个连拱隧道的宽度是合理的,偏于安全的.(2) 应用比尔鲍曼理论求得塌落拱曲线方程,然后用作图法在连拱隧道外侧作一个切线与以地形的坡度求出的塌落拱曲线方程的切线相平行,两平行线的距离即为地形偏压临界覆盖厚度.运用此方法求得连拱隧道大跨度条件下的偏压连拱隧道地形偏压临界覆土厚度,为偏压连拱隧道设计提供可靠依据.(3) 针对连拱隧道断面远大于单线隧道,围岩压力大于按单线隧道宽度修正结果所出现的问题,提出对于大跨度双连拱隧道,在极浅埋、浅埋条件下,仍然分别采用全土柱理论荷载和谢家烋理论荷载;在深埋条件下,推荐双连拱隧道竖直地层压力采用适合双连拱大断面隧道特点的修正比尔鲍曼理论围岩压力计算公式.(4) 对于浅埋偏压连拱隧道,不仅要考虑非对称的地层主动荷载,还要调整浅埋侧地层被动荷载,提出浅埋偏压连拱隧道地层主动偏压荷载和被动不均匀荷载确定方法及地形偏压情况下隧道支护结构的合理计算方法,并求得不同坡率、不同围岩级别条件下浅埋侧土体的弹性抗力系数的合理取值,为设计中偏压连拱隧道采用荷载结构模式计算时浅埋侧土体的弹性抗力系数取值提供参考.(5) 在充分吸收国内外围岩分类经验的基础上,针对隧道施工期间的现场围岩判别特点与要求,提出一种现场围岩快速评价方法,该方法以定量与定性指标相结合,现场观察、量测及快速评价.另外针对隧道围岩实际力学指标难以获取的难题,提出应用围岩Q指标和现场点荷载强度推测围岩物理力学参数的方法,并结合围岩快速评价结果,综合确定隧道围岩实际力学指标.(6) 对于浅埋偏压连拱隧道,侧导洞应该先开挖深埋侧侧导洞,而主洞应该先开挖浅埋侧主洞;而对于非偏压连拱隧道,在围岩条件较好时主洞开挖可采用上下台阶法,且主洞开挖合理的工作面间距应约为2.0D~3.0D(D为单拱跨度);在中隔墙完成后,部分回填,使正洞初期支护能直接作用在中隔墙上,不仅有效提高支护整体刚度,还使中隔墙受力更合理,改善中隔墙受力状态.经富溪偏压连拱隧道工程施工与现场监测结果检验,提出的连拱隧道坑道宽度取值、偏压连拱隧道深浅埋分界、围岩主动压力与围岩被动压力计算方法、现场围岩级别快速评价以及施工方法正确合理,可为工程建设提供重要技术支持和经验.  相似文献   

7.
浅埋偏压连拱隧道左右洞的施工顺序和布局对围岩稳定和支护受力影响较大,为了明确浅埋偏压连拱隧道合理施工顺序,本文依托广东省南山路连拱隧道工程,结合现场监测以及数值模拟方法,研究了软弱围岩浅埋偏压连拱隧道左右正洞不同开挖布局时初期支护受力变形规律。通过建立数值模型对先开挖浅埋侧正洞和先开挖深埋侧正洞两种分案下的拱顶沉降、初期支护受力、塑性区分布、中隔墙水平侧向位移及受力等模拟结果的分析,得出:(1)不管采用哪种开挖顺序,先行洞的拱顶沉降均小于后行洞的拱顶沉降;(2)后行洞上台阶开挖后为中隔墙倾斜最为严重阶段,隧道施工完成后中隔墙向浅埋侧倾斜;(3)先行洞的初期支护整体受力较大,后行洞的初期支护受力较小;受力较大的部位一般在先行洞上台阶与中隔墙连接处以及靠近中隔墙侧拱腰处;(4)先开挖浅埋侧正洞方案较优,该方案支护受力变形较小,有利于支护结构的稳定。研究结果指导了现场工程施工,现场监测数据与计算结果较为吻合,研究结论可为类似工程提供参考。  相似文献   

8.
结合衬砌与围岩的相互作用,分析无衬砌隧道开挖后压力拱的形成过程,根据隧道衬砌后应力位移的分布规律来研究衬砌施工时间对隧道压力拱的影响,得到如下结论:隧道开挖后,不进行衬砌施工,应力重新分布后顶部水平应力和侧边垂直应力增大,顶部垂直应力和侧边水平应力减小;随着时间的发展,形成的压力拱的垂直外界基本不变,垂直内界逐渐减小,水平内外界逐渐减小,压力拱拱体内最大应力均逐渐增大;隧道围岩较好时,衬砌时间选在稳定压力拱形成的时间,而围岩较差时,衬砌时间选在隧道压力拱开始形成的时间。  相似文献   

9.
浅埋偏压隧道受力性质复杂,施工危险程度较高。以齐家庄隧道为研究对象,采用离散单元法模拟了浅埋偏压隧道开挖过程,分析了不同工况下围岩应力、位移的变化规律,并着重从微细观角度研究了开挖引起的围岩内部的裂隙发展、接触力分布和强弱力链演化规律,进而阐释了锚杆支护的作用机理。结果显示:隧道开挖引起围岩应力转移,使强力链产生了明显的拱效应,而弱力链仍表现为各向同性;系统锚杆的挤压加固作用促进了隧道附近拱效应的形成,提高了隧道的稳定性;拱效应引起隧道上部应力沿压力拱传递到隧道的拱腰和拱脚,使其附近颗粒接触力增大,主方向偏转;现场监测数据与模拟结果规律一致,且与有锚杆三台阶工况结果接近。  相似文献   

10.
《Planning》2019,(2)
为分析软土地层小净距叠交隧道施工影响,以无锡地铁3号线出入段线隧道倾斜穿越长机区间及电力隧道为工程背景,使用FLAC3D5.0软件进行施工模拟,分析土仓处于不同欠压状态下土体及管片的变形及受力规律。结果表明:开挖引起的地表沉降随支护应力比的降低而增大,随土层深度增加土体沉降槽系数变小且量值增大;由于隧道处于倾斜叠交状态,开挖产生的应力释放导致隧道洞周土层位移出现不均匀变化,同时不同隧道施工对地表沉降存在叠加效应。不同支护压力比下电力隧道结构变形量值保持在10mm左右,支护压力比为0.53时新建隧道管片结构的变形量达到29mm,接近规范限制,在施工中应控制支护压力比不低于0.53,既有长—机区间隧道受力呈现先不利、后有利的变化趋势,电力隧道受力呈不利状态,施工时需密切关注。  相似文献   

11.
浅埋大断面大跨度连拱隧道支护体系现场监测试验研究   总被引:1,自引:0,他引:1  
浅埋大断面大跨度连拱隧道跨度大、埋深浅、围岩稳定性差,地质条件复杂,为保证施工顺利进行,需加强隧道施工监测,根据监测调整后续施工方法。对浅埋大断面大跨度连拱隧道支护体系的现场监测试验方案及不同开挖工序下隧道支护体系受力特点进行了分析与研究。研究结果表明:①左右洞上台阶开挖引起支护体系应力分布较大变化,是隧道支护主要监测控制点;②右洞上、下台阶开挖引起中墙内力较大变化,是中墙稳定主要监测控制点;③右洞上、下台阶开挖对支护应力的纵向影响范围约为隧道跨度的1/3和1/2;④对于浅埋大断面大跨度连拱隧道,应及早施作二衬,封闭成环,以改善结构受力。研究成果可为日后类似工程的设计、施工和研究提供有益的借鉴和参考。  相似文献   

12.
连拱隧道支护体系变形的现场监测及分析   总被引:2,自引:1,他引:1  
与普通公路隧道相比,连拱隧道因隧道施工复杂,工序转换繁多,其变形特征更加复杂。结合某连拱隧道工程实践,在连拱隧道施工中对支护体系变形进行现场监测的基础上,分析连拱隧道支护体系变形随时间变化的规律及不同开挖工序下支护体系变形特征。监测结果表明:采用台阶法施工,能较好地控制连拱隧道的变形;在隧道施工过程中,右导洞上、下台阶开挖对支护变形影响较大,是隧道结构稳定性主要控制点;左洞上台阶和右洞下台阶开挖的纵向影响距离约为隧道跨度的2倍,右洞上台阶和左洞下台阶开挖的纵向影响距离大致为一倍隧道跨度。  相似文献   

13.
介绍了采用三台阶七步开挖法进行隧道施工的技术特点,以某隧道施工为例说明了洞体开挖中的各工序要点,重点在于初期支护尽快闭合成环,及时跟进仰拱和拱墙衬砌,强调了确保施工质量的控制要点,以确保洞体施工质量和安全。  相似文献   

14.
考虑围岩性质劣化的深埋软弱隧道破坏机理数值模拟研究   总被引:2,自引:0,他引:2  
介绍劣化损伤本构模型在FLAC3D中的二次开发流程以及本构模型中软弱围岩力学参数的选取原则。然后利用FLAC3D劣化损伤本构模型对高速铁路客运专线双线深埋隧道(Ⅳ、Ⅴ级别围岩)损伤破坏机理进行数值模拟研究,分析围岩应力场特征从而确定压力拱边界,在此基础上说明深埋隧道围岩受力分区特点;接着对埋深、侧压力系数、围岩级别对受力分区的影响进行数值模拟研究。研究结果表明:FLAC3D劣化损伤模型可以描述深埋隧道开挖损伤区域的损伤程度,揭示深埋隧道破坏机理即深埋洞室围岩稳定性丧失的区域集中在沿最小主应力方向的"楔形"区内;深埋隧道开挖后受力分区:由隧道洞壁往外依次为劣化损伤严重区-压力拱拱体-原岩应力区;埋深、侧压力系数、围岩级别对隧道围岩受力分区范围有很大的影响。  相似文献   

15.
浅埋岩质公路隧道爆破开挖时,由于工程地质条件复杂,环境影响因素较多,施工安全是大家十分关注的重要问题。对密云火郎峪浅埋岩质公路隧道开挖施工过程进行了应力应变有限元计算分析和监控量测,结果对比分析可知,隧道开挖后拱顶存在明显的拱效应,拱脚处围岩压力集中,拱脚的安全直接影响到整个隧道的安全和施工;围岩压力、洞顶沉降和收敛监控量测表明,初衬支护后7d为构筑二次衬砌最理想的时机。正确的监测和计算分析可以预测和预知隧道在施工过程中可能发生的变形和结构所受的应力大小,指导设计和施工,提高隧道施工安全性。  相似文献   

16.
特大断面隧道的建设越来越多,传统规范荷载计算方法未考虑特大断面隧道施工的实际情况,计算结果偏大。在确定隧道压力拱判别方法的基础上,采用大型二维模型试验探究开挖过程中特大断面隧道压力拱的动态发展。从开挖洞周应力随开挖步变化的情况可以看出,大断面隧道压力拱是随着开挖步分区域、分阶段形成的,并采用数值分析对试验中的规律进行验证总结。为得到支护对压力拱发展的限制作用,采用二维精细化数值模型,模拟施工工况,探究支护对限制压力拱扩展的作用,得到大断面隧道复杂施工过程下压力拱的动态变化、压力拱高度折减系数,用于指导设计计算。  相似文献   

17.
深埋圆形隧道的压力拱研究   总被引:1,自引:0,他引:1  
针对压力拱存在概念不明确的问题,阐述了隧道中压力拱的概念,指出压力拱是一条受压的曲线,隧道开挖后会形成一次开挖压力拱,当围岩出现拉应力时会导致二次开挖压力拱出现。然后,在现有深埋圆形隧道解析解基础上,将地应力分为静水压力、双向常应力、与深度成正比三种情况进行压力拱分析。研究结果表明:对于地应力为静水压力情况,一次压力拱和隧道的轮廓线重合;对于地应力为双向常应力情况,一次压力拱和水平与竖向应力比有关,还和受拉判断标准有关,当竖向应力是水平应力的3倍以上时,拱顶将产生拉应力,且压力拱和隧道轮廓线间的受拉体随其值的增大而增大;对于地应力与深度成正比情况,一次压力拱的特性和地应力为双向常应力情况类似,隧道顶部受拉时的水平地应力与竖向地应力比值要小于0.2。从工程安全角度考虑,压力拱宜以最小主应力受拉为判断标准。  相似文献   

18.
初期支护极限位移值是隧道开挖支护过程中围岩应力状态变化的重要的反馈信息,是判断隧道围岩稳定性状况的直接依据。为了计算极限位移值,采用Hoek-Brown屈服准则,运用尖点突变特征值作为极限状态的判据,依据JTG/T D71—2004《公路隧道交通工程设计规范》和工程经验选取断面形式、支护方式以及材料参数,运用FLAC3D分别确定正台阶法、环形开挖预留核心土法、单侧壁导坑法、双侧壁导坑法等4种开挖方式在不同埋深、围岩级别和支护参数影响下,拱顶、拱腰和拱脚的极限位移值。通过对计算结果的统计分析,可知环形开挖预留核心土法可有效控制拱脚的变形,而双侧壁导坑法则能很好地限制拱顶沉降值与拱腰的收敛值,并确定了掌子面变形的主要区域。同时提出应明确洞周变形控制点,细化埋深范围,依据不同的开挖方式划定不同的位移允许范围。  相似文献   

19.
针对盾构隧道开挖面稳定的极限支护压力,通过理论计算与现场实测的对比分析,提出了不同地层隧道上覆土压力的计算原则,将条分法的思想引入盾构开挖面的稳定性分析,导出了开挖面稳定的极限状态方程,据此可求得盾构隧道开挖面稳定的极限支护压力。最后,结合具体的工程实践,将前述理论和方法应用于临界滑动面的搜索和极限支护压力的计算。上述研究成果对于指导盾构隧道的设计与施工具有重要的作用。  相似文献   

20.
等值地应力下岩质圆形隧道位移释放系数比较及应用   总被引:1,自引:1,他引:0  
 隧道前期变形是利用收敛约束法确定支护压力和围岩稳定变形的关键,在分析隧道开挖面空间效应机制的基础上,总结具有代表性的深埋岩质圆形隧道位移释放系数公式,对其进行分类、适用性及空间效应的比较,得到不同位移释放系数、不同支护施作距离和不同控制目标下的收敛约束差异。研究结果表明:以围岩塑性区最大半径为基础的位移释放系数对弹性围岩和各种弹塑性围岩均适用,具有广泛的工程应用前景;弹性位移释放系数仅适用于弹性围岩,常用塑性位移释放系数仅适用于相对半径为2的隧道围岩;不宜将依据距开挖面较远处得到的支护压力而设计的支护结构随意前移构筑,应依据实际工程的围岩特性,合理选择位移释放系数公式,适时施作不同刚度的支护。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号