首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
本文分别以树脂包覆天然石墨(RCNG)、人造石墨(AG)和中间相碳微球(MCMB)为负极材料,制备了三种不同的圆柱形磷酸铁锂(LiFePO4)动力电池。通过X射线衍射分析仪(XRD)和扫描电子显微镜(SEM)对材料的晶体结构与形貌进行表征,并采用多种手段测试了各动力电池的电化学性能。结果显示,磷酸铁锂/中间相碳微球(LFP/MCMB)电池表现出较为优异的电化学低温、倍率和循环性能,其在 −20℃下的1 C容量保持率为61.04%,6 C高倍率容量保持率和温升分别为87.52%和24.8℃,3 C循环1 000次后容量保持率为93.81%。  相似文献   

2.
本工作以SiO、沥青和聚四氟乙烯为原料,通过机械融合和加热包覆,制备出了氟元素掺杂的硅碳复合材料。采用SEM、TEM、XRD、红外碳硫分析、激光粒度分析、粉末电阻率和比表面积测试仪等对样品进行了微观形貌表征和物相结构分析。电化学测试表明:当聚四氟乙烯用量为20%(质量百分数)时,SiO@C-F材料具有优异的电化学性能,可逆比容量为1426.8 mA·h/g,首次效率为77.01%,20圈容量保持率83.95%。  相似文献   

3.
基于磷酸铁锂(LiFePO4)和活性炭(AC)两种单体材料成功构建了磷酸铁锂/活性炭(LiFePO4/AC)复合正极。进一步,通过优化LiFePO4/AC复合电极中两种单体材料的质量比、选择亚微米尺寸的石墨为负极材料, 组装了基于“LiFePO4+AC/石墨”体系的电化学储能器件(锂离子电容器),同时制备了AC/AC超级电容器作为参照。研究表明,不同类型黏结剂对AC电极的电容特性影响非常显著,其中LA133水性黏结剂的电极性能优于油性黏结剂的;此外,制备的LiFePO4/AC复合正极表现出了电容和电池的双重特性,且复合电极的构建有利于锂离子的嵌入和脱出。复合正极中LiFePO4含量为40%(质量分数)时,构建的锂离子电容器比能量为AC/AC超级电容器的4倍(约40 W·h/kg,以活性材料质量计),可实现10 C快速充放电;5000次循环后,锂离子电容器和AC/AC超级电容器容量保持率相近,约为初始容量的75%。  相似文献   

4.
本文首先以SiO、沥青为原料,制备了SiO/C复合材料.然后以SiO/C复合材料,硝酸铝,氨水,尿素为原料,利用水浴加热和高温热处理的方法,制备出了Al2O3-SiO/C复合材料.采用激光粒度分析、比表面积测试仪、XRD、SEM对样品进行了物相结构分析和微现形貌的表征测试.电化学测试表明:加入尿素的A12O3-SiO/C复合材料具有最佳电化学性能,首次效率高达74.81%,充电比容量为1436.4mA·h/g,表现了优异的电化学性能.  相似文献   

5.
锂离子二次电池(LIBs)是当今新能源领域的主流储能器件。磷酸铁锂(LiFePO4)凭借高能量密度、低成本、稳定的充放电平台、环境友好、安全性高等优势,成为应用最为广泛的锂离子电池正极材料之一。如何提高其输出功率以及低温下的能量密度和使用寿命,是磷酸铁锂正极材料面临的主要挑战。本文通过对近期相关文献的探讨,归纳总结了近年来针对磷酸铁锂正极材料的主流改性策略。详细分析了元素掺杂提高材料电化学性能的内在机理,梳理了不同包覆剂对磷酸铁锂的保护机制,这两种手段可有效提高磷酸铁锂正极材料的电子电导率和离子扩散速率,实现材料更高的能量密度、更长的循环寿命和更高的倍率性能。此外也总结了磷酸铁锂常见补锂添加剂的特性及其对正极首圈库仑效率和放电比容量的改善行为。综合分析表明,多种元素共掺杂,先进碳材料包覆和高容量补锂材料的添加有望成为提升磷酸铁锂电化学性能的重要策略。最后,对磷酸铁锂正极未来在商业化生产改良和开发柔性电极等方向的发展前景和面临的挑战进行了展望。  相似文献   

6.
电动汽车及混合动力汽车的发展对锂离子电池的功率特性提出了更高的要求.目前商业化的锂离子电池负极材料以石墨为主.然而石墨材料的层间距较小(0.335 nm),锂的扩散受到限制,不利于大电流充电.因此,制备和评价具有快充能力的石墨负极材料将有力推动锂离子电池在电动汽车中的应用.本文选择了一种小粒径(约6.7 μm)人造石墨,通过包覆硬碳进一步提高材料的快充性能.采用SEM、BET等表征材料的物理指标.考察材料首次充放电曲线、倍率、电化学阻抗和锂离子扩散系数等,评价硬碳包覆对快充性能的影响.  相似文献   

7.
本工作采用喷雾干燥法制备了小片径石墨烯包覆的Li1.22Mn0.52Ni0.26O2富锂锰基材料(G-LNMO),系统研究了包覆前后材料的晶体结构、微观形貌及电化学性质.扫描电镜(SEM)及透射电镜(TEM)结果表明,该方法实现了石墨烯对富锂锰基材料(LNMO)的均匀包覆.充放电测试表明,石墨烯包覆后将LNMO材料在0.1 C和1 C倍率下的放电容量分别从199.8 mA·h/g和87.1 mA·h/g提升至220.2 mA·h/g和117.6 mA·h/g.在0.5 C倍率下经过100次循环后,G-LNMO材料的容量保持率为88%,相比于LNMO材料提升了17%.电池充放电曲线及电化学阻抗分析显示,石墨烯包覆能够显著提升电极动力学,降低电池在充放电过程中的极化,减缓电极/电解液界面副反应的发生,进而提升材料的循环稳定性和倍率性能.  相似文献   

8.
路策  丁园 《江西能源》2021,(1):83-88
铁氧化物在修复重金属污染土壤领域展现了良好的吸附性能,具有高氧官能团的多孔碳材料为铁氧化物结合土壤中的重金属离子提供了有效的表面配体,协同铁氧化物提高了修复重金属污染土壤效果.综述了国内外制备铁氧化物方法的优缺点及多孔碳材料负载铁氧化物的方法,总结了不同铁氧化物、多孔碳材料的相互作用及其在土壤重金属污染修复中的研究进展,指出土壤重金属污染修复未来研究的发展方向;进一步研究铁氧化物-多孔碳复合材料在土壤中铁形态的动态变化及其与重金属形态的关系以及微生物作用下土壤中真实界面反应的情况,以期为修复重金属污染土壤提供参考.  相似文献   

9.
为了提升MgO改性生物质炭的磷吸附能力,文章以花生壳为载体,利用碱式碳酸镁前驱体自组装-热解技术制备了结构有序的花瓣状MgO改性生物质炭吸附剂(FMgO-BC)。采用SEM,EDS,XRD,IR和TG表征了制备的FMgO-BC的物相结构与表面形貌,并研究了水解温度和Mg;浓度对FMgO-BC吸附性能的影响。研究结果表明,当水解温度为80℃,Mg2+浓度为0.6 mg/L时,FMgO-BC的吸附性能最优。文章还探究了FMgO-BC在不同pH值和加入量条件下的等温吸附模型和吸附动力学,研究结果表明,FMgO-BC的磷吸附动力学符合准二级动力学方程,等温吸附模型符合Langmuir等温吸附方程,理论最大吸附量为2221.89 mg/g,优于目前报道的MgO改性生物质炭的磷吸附性能。  相似文献   

10.
O3型层状氧化物正极材料NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)具有高比容量、低成本和环境友好性等优点,被认为是最有前途的钠离子电池正极材料之一,但在充放电过程中会发生一系列复杂的相变,导致电化学性能较差。本研究报道了一种协同改性方法,以同时提高NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)正极材料的循环稳定性和倍率性能。通过将硼酸粉末和正极材料固相球磨混匀后低温煅烧,在NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)正极材料表面包覆纳米非金属氧化物B_(2)O_(3)。借助X射线衍射仪(XRD)、扫描电子显微技术(SEM)、透射电子显微镜(TEM)和电化学技术等测试手段,对比分析不同包覆量和原材料的形貌和电化学性能,筛选得到最优包覆量为2%(质量分数,余同)。该方法实现了B_(2)O_(3)的均匀包覆,并且没有改变NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)正极材料的晶体结构。通过电化学性能测试表明2%B_(2)O_(3)包覆材料在1 C倍率下循环200圈容量保持率从78%提升至87%。同时,2%B_(2)O_(3)包覆材料的高倍率性能也得到了改善,10 C高倍率下放电比容量从75 mAh/g提升至99 mAh/g。结果表明,这是一种有效且可靠的表面改性策略,可以增强钠离子电池层状氧化物正极材料的电化学性能。  相似文献   

11.
Olivine structure LiFePO4/C composite powders are synthesized as cathode materials for Li-ion batteries via a conventional solid-state reaction. Improvement in electrochemical performance has been achieved by using poly(vinyl alcohol) as the carbon sources for the as-prepared materials. The influence of the heat treatment on the physical and the electrochemical properties of LiFePO4/C materials is investigated. To examine the effect of added carbon content on the properties of materials, a one-step heat treatment has been employed with control of the PVA content in the precursor. Six samples were prepared with 0, 1, 3, 5, 10 and 30 wt.% PVA added to the raw materials. The particle size of LiFePO4 decreases as the carbon content increases. Materials with medium carbon contents have a small charge-transfer resistance and thus exhibit superior electrochemical performance. Interestingly, for a LiFePO4/C composite with a low PVA content, an unusual plateau at 4.3 V is observed. It is considered that this is due to the Fe3+/Fe4+ redox reaction of Fe3+ compounds that are present as an impurity. For samples with a high PVA amount, a thicker carbon coating provides an obstacle to improve the electrochemical properties.  相似文献   

12.
LiFePO4/C was prepared by solid-state reaction from Li3PO4, Fe3(PO4)2·8H2O, carbon and glucose in a few minutes in a scientific MW (microwave) oven with temperature and power control. The material was characterized by X-ray diffraction, scanning electron microscopy and by TGA analysis to evaluate carbon content. The electrochemical characterization as positive electrode in EC (ethylene carbonate)–DMC (dimethylcarbonate) 1 M LiPF6 was performed by galvanostatic charge–discharge cycles at C/10 to evaluate specific capacity and by sequences of 10 s discharge–charge pulses, at different high C-rates (5–45C) to evaluate pulse-specific power in simulate operative conditions for full-HEV application. The maximum pulse-specific power and, particularly, pulse efficiency values are quite high and make MW synthesis a very promising route for mass production of LiFePO4/C for full-HEV batteries at low energy costs.  相似文献   

13.
以提高磷酸铁锂体系动力电池的能量密度为目的,在LiFePO4正极材料中加入少量S材料球磨制得LiFePO4/S复合正极材料。使用X射线衍射(XRD)和扫描电子显微镜(SEM)表征了结构和形貌,并分别组装扣式电池和软包电池测试其电化学性能。结果表明,磷酸铁锂纳米颗粒致密均匀附着在硫材料表面,构成具有包覆性结构的复合材料。在不同比例的LiFePO4/S复合材料中,硫的添加量为15%的LiFePO4/S复合正极材料表现出最优异的电化学性能,0.1 C下的初始容量为251.5mA·h/g,循环100周之后容量保持率达94.9%。以该比例的复合材料为正极的0.5A·h软包电池,循环100周后容量保持率为86.7%。LiFePO4作为一种极性载体,对多硫化物有一定的吸附能力,少量硫的加入可以在大幅度提高LiFePO4材料放电容量的同时,维持优异的循环稳定性。LiFePO4/S复合材料可为磷酸铁锂体系动力电池的发展提供新的思路。  相似文献   

14.
目前全球高动力锂离子电池系统的发展主要集中在锂锰电池,锂钴镍锰电池以及锂铁电池,其中磷酸亚铁锂材料具有高电容量,高放电功率,极佳的长循环寿命以及良好的热稳定性与高温性能等优点,已成为动力锂离子电池首选的高安全性正极材料.然而,磷酸亚铁锂材料在工业化量产时,必须解决电池芯加工性差及材料一致性不佳等问题,作者曾结合多项新颖观念与技术于磷酸亚铁锂材料制做过程,在粉体表面涂布碳层,在晶体内部掺杂金属,分别改善材料电导率与锂离子扩散速度以及有效地控制碳含量,粉体比表面积,碳层均匀性,粒径大小与分布,制备出高质量磷酸亚铁锂产品.该文将回顾并探讨上述研发工作的一些重要结果.  相似文献   

15.
锂离子电池内短路是诱发电池热失控的主要原因,适当的安全性添加剂可以阻止电池热失控的发生。本文通过界面聚合法在聚乙烯蜡表面生成适量的导电聚苯胺,制备了一种具有良好导电性能的PTC材料(PANI-PEW),并对PANI-PEW的微观形貌、电导率以及添加至LiFePO4正极中的电化学性能进行了对比分析。测试结果表明,PANI-PEW在常温下的电导率为1.08×10-3 S/m,在90~120℃时,其电阻值急剧增大。在0.5 C和1 C倍率下,PANI-PEW的加入对LiFePO4电池的阻抗和循环性能影响较小,而经过120℃热处理后的含15%(质量分数) PANI-PEW的极片,其电池的阻抗大幅增加且首次放电比容量只有35.3 mA·h/g,在第12次循环后,放电比容量接近于0。以上结果表明,PANI-PEW是一种性能优异的PTC材料且能在120℃时阻止电池热失控的发生。  相似文献   

16.
为了改善LiNi0.8Co0.15Al0.05O2正极材料的电化学热稳定性能,加入LiFePO4共混制成了LiFePO4/LiNi0.8Co0.15Al0.05O2锂离子电池用混合正极材料。使用X射线衍射(XRD)和扫描电子显微镜(SEM)表征了结构和形貌,测试了电化学性能。结果显示,简单球磨的混合LiFePO4/LiNi0.8Co0.15Al0.05O2正极材料中,纳米LiFePO4粒子包覆在LiNi0.8Co0.15Al0.05O2粒子表面提高了混合正极材料在充放电过程中的电化学稳定性和结构稳定性。LiFePO4/LiNi0.8Co0.15Al0.05O2混合正极材料在50 ℃下循环100周容量保持率为82.0%,明显地优于单一LiNi0.8Co0.15Al0.05O2材料的72.9%。  相似文献   

17.
Li与S完全反应生成Li2S时,单质硫正极的理论比容量为1675 mA·h/g,比LiFePO4,LiCoO2等正极材料的比容量高很多.单质S价格低,无毒,是一种理想的正极材料,然而其导电性较低,循环比容量衰减较快,因此需要改善S正极材料的导电性来提高其电化学性能.本文综述了硫基复合正极材料的制备方法,结构与形貌,电化学性能.探讨了S与多孔碳,碳纳米管,石墨烯和聚吡咯等复合的正极材料的电化学性能,并对硫基正极材料的发展趋势进行了展望.  相似文献   

18.
在锂离子电池电极与电解质材料研究中,缺陷化学对于理解材料的物理化学性质,指导材料的理性设计与优化方面具有重要的意义.本文重点讨论了锂电池材料中缺陷形态的类型,热力学基础,缺陷的存在对材料性质的调制等方面的内容,讨论了小尺寸材料引起的电极电位偏离理想材料的问题.以锂离子电池中重要的正极材料LiFePO4为例,结合第一性原理计算与原子级分辨的球差校正电镜技术,介绍了LiFePO4中缺陷的生成与表征及对电子电导率的调制,对锂离子输运的影响,缺陷结构的可视化以及缺陷进一步演化导致的缺陷簇和超结构等方面的工作.  相似文献   

19.
本文针对商业化锂离子电池正极材料,介绍了钴酸锂、镍钴锰三元材料、尖晶石锰酸锂、磷酸铁锂等正极材料的优缺点、市场现状,以及我国正极材料的技术和产业现状。对行业存在的共性问题,如产品品质差,技术实力不足进行了分析。展望了产业未来发展趋势,并提出了增加技术投入、加强产学研协同和高端装备应用等建议。  相似文献   

20.
磷酸铁锂已经成为一种重要的锂离子动力电池正极材料,磷酸铁锂的合成方法分为固相法和液相法.液相法合成对材料的微观形貌影响较大,在合成具有特定形貌和尺寸的磷酸铁锂材料时,仍然以液相法合成为主.本文较详细地介绍了近年来液相法中的溶剂热法和溶胶-凝胶法制备磷酸铁锂的研究进展,包括传统的水热合成和非水溶剂热合成以及溶胶-凝胶法在某些具有特殊微结构的磷酸铁锂制备中的研究进展.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号