首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
全钒液流电池电解液为单一钒元素各价态离子的电解质溶液,避免了不同元素离子通过膜渗透产生的交叉污染,电池循环次数高,使用寿命长。全钒液流电池非常适合电站削峰填谷、新能源发电储能和偏远地区供电等。但受钒离子溶解度的限制,全钒液流电池电解液浓度相对较低,导致电池能量密度较低、电解液储罐体积大,钒电池更适用于静态储能系统,而较难应用于电动汽车、电子产品等领域,而电解液成本高也限制了其大规模商业化应用。本工作基于各价态钒离子在不同酸度和温度条件下在传统H2SO4溶液中的溶解性能,总结了通过引入添加剂、改变支撑电解质和构建混合相电解液以提高钒电解液浓度和稳定性的方法及研究现状,介绍了不同种类添加剂在高温下稳定V(V)的作用机理,不同酸作为支撑电解质对V的溶解性及电解液电化学性能的影响,以及混合相电解液对于稳定电解液的内在机制。重点分析了最近研究报道的新型高浓度钒电解液,展望了大幅提高钒电解液浓度的可行性及研发方向。综合分析表明,改变传统H2SO4支撑电解质,如HCl/H2SO4<...  相似文献   

2.
电解液是钒电池能量存储的核心,其组成对电池的能量转化效率、循环稳定性等具有显著影响。本工作针对正负极电解液体积比、电解液价态,较系统地考察了它们对钒电池电化学性能的影响规律。结果表明,保持正极电解液体积不变,单纯增加负极的体积,可提高电池的放电容量,但对电池的能量转换效率影响较小;电解液价态的升高会在一定程度上降低钒电池的放电容量,但其能量转换效率却呈现先升高后降低的抛物线规律;增加负极电解液体积和提高电解液价态均会导致负极活性物质过量,但后者对电池性能的影响更为显著,在后者的基础上前者对能量转换效率的影响也会被放大。  相似文献   

3.
电解液是钒电池能量存储的核心,其组成对电池的能量转化效率、循环稳定性等具有显著影响。本工作针对正负极电解液体积比、电解液价态,较系统地考察了它们对钒电池电化学性能的影响规律。结果表明,保持正极电解液体积不变,单纯增加负极的体积,可提高电池的放电容量,但对电池的能量转换效率影响较小;电解液价态的升高会在一定程度上降低钒电池的放电容量,但其能量转换效率却呈现先升高后降低的抛物线规律;增加负极电解液体积和提高电解液价态均会导致负极活性物质过量,但后者对电池性能的影响更为显著,在后者的基础上前者对能量转换效率的影响也会被放大。  相似文献   

4.
石榴石固体电解质型的固态锂金属电池因具有高能量密度、高安全性和长循环寿命等优点而受到了研究人员的重点关注,然而石榴石型电解质和锂负极之间存在巨大的界面阻抗,严重阻碍了电池的正常工作.针对该问题,本文主要在石榴石型固体电解质与锂负极之间的界面引入少量的电解液,减少石榴石型电解质与锂负极的界面阻抗,使得固态对称锂电池正常循环.进一步地采用扫描电子显微镜(SEM)、X射线能谱仪(EDS)、X射线光电子能谱(XPS)和电化学阻抗谱(EIS)研究了石榴石型电解质与锂负极之间界面层的形貌、成分、界面阻抗和循环稳定性.研究结果表明,液体电解液极大地降低了石榴型电解质与锂负极间的界面阻抗,在80℃情况下,石榴型电解质与锂负极循环前的面电阻为1.89 Ω·cm2,循环后的面电阻为3.24 Ω·cm2.  相似文献   

5.
钠金属被认为是下一代高能量密度、高功率密度储能器件中非常有前景的负极材料。然而钠金属一直面临着循环性差以及钠金属枝晶生长造成的安全隐患的困扰。为了提高钠金属负极的循环稳定性,我们研究了钠金属负极在双(氟磺酰)亚胺钠和双(三氟甲基磺酰)亚胺钠高浓度电解液中的性能。研究发现,通过将NaFSI和NaTFSI混合得到双盐高浓度电解液,钠金属负极可以实现相对于单一盐电解液显著提高的循环性能。电化学性能和循环后的形貌表征表明,高浓度双盐电解液可以防止电解液腐蚀集流体,而且还能在钠金属负极表面构建更稳定的界面层。本工作还使用这种双盐高浓度电解液组装了钠金属全电池并实现了稳定的循环性能,表明这种新型的电解液有非常好的实用化前景。  相似文献   

6.
该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter~*”为关键词检索了Web of Science从2022年2月1日至2022年3月31日上线的锂电池研究论文,共有3128篇,选择其中100篇加以评论。层状正极材料的研究集中在高镍三元材料、镍酸锂、钴酸锂和富锂相材料,其相关研究关注表面包覆层、前驱体及合成条件、循环中的结构变化。负极材料的研究重点包括对硅颗粒的包覆,具有三维结构的硅/碳、硅/锡复合材料。金属锂负极的界面构筑及三维结构设计受到重点关注和研究。固态电解质的研究主要包括对硫化物固态电解质、氧化物固态电解质、聚合物与氧化物固体电解质复合材料的合成以及相关性能研究。液态电解液方面包括适应高电压正极材料及提升金属锂负极、石墨负极电池性能的添加剂与溶剂研究。针对固态电池,复合正极制备、双层电解质结构、锂界面枝晶及副反应抑制有多篇,其他电池技术主要偏重液态锂硫电池正极设计。表征分析涵盖了锂扩散、SEI形成、硫化物电解质的电化学与化学稳定性等方面。理论模拟工作涉及三元材料掺杂、电解液物化性质以及新型固态电解质搜寻,电池中电解液与正负极的界面以及固态电解质与Li的界...  相似文献   

7.
固态电池利用固态电解质替换电解液,为电池的发展提供了高能量密度和高安全性的保障,其中硫化物固态电解质因其高离子电导率等优势受到了广泛关注。然而使用硫化物固态电解质还会面临电极/电解质接触较差、与电极发生界面副反应、空气稳定性差的问题,往往需要与一些有机物配合以改善电池性能,例如有机溶剂、有机电解液或聚合物。本文综述了不同种类有机物对硫化物固态电解质的辅助作用,首先回顾了基于硫化物固态电解质的准固态电池发展现状,分别从正极、电解质、负极及相互界面处添加电解液或溶液的角度,阐述了液体添加对准固态电池产生的界面浸润、构筑保护层等增益作用;其次介绍了聚合物/硫化物复合固态电解质的湿法和干法制备,对比了极性和非极性聚合物黏结剂在制备工艺上的差异,着重分析了有机组分的添加对复合电解质离子电导率等性能的影响;阐述了通过溶液法对复合正极内部界面的改善方法,并补充介绍了薄片状(Sheet-type)电极的制备工艺与发展前景;最后总结了目前有机组分在与硫化物固态电解质配合时面临的难点,展望了未来研究工作的发展方向,为组装高性能硫化物基固态电池提供思路。  相似文献   

8.
锂二次电池中电极与电解液之间的相容性对电池的电化学性能有重要影响,利用表面改性剂可以改善电极与电解液之间的相容性和界面性能,提高电池的性能。本文总结和归纳了有机硅表面改性剂对锂二次电池负极(锂金属、石墨和硅负极)改性的研究进展,展望了有机硅表面改性剂在锂二次电池中的应用前景。  相似文献   

9.
硫化物固态电解质具有超高离子电导率和优良力学性能,是实现全固态电池最有希望的技术路线之一.为进一步提高硫化物全固态电池的能量密度,促进其应用,理论比容量接近石墨10倍(3759 mA·h/g)的硅负极材料具有极佳的应用前景.并且Si负极和硫化物固态电解质结合,可规避Si负极在液态电池中重复生成固态电解质界面层(SEI)的问题,充分发挥Si负极的高容量,同时利用硫化物较好的力学性能缓冲硅负极巨大的体积膨胀,改善固固接触,促进离子扩散,有望实现高能量密度电池的长效循环.虽然含Si负极硫化物全固态电池极具实用前景,但是目前研究尚处于起步阶段,缺少成熟有效的表征手段和对基础科学问题的深入理解,全电池性能较差、容量衰减过快、比能量还有很大提升空间.为加速推进含Si负极硫化物全固态电池的研究进程,本文总结了近年来该领域的相关工作,分类论述了 3种类型的含Si负极硫化物全固态电池(粉饼电池、湿法涂覆电池、薄膜电池),综合分析了影响其性能的关键因素,并阐明通过减小Si的颗粒尺寸、外加应力、设置合适的截止电压、调控硫化物电解质的杨氏模量等手段可以有效优化含Si负极硫化物全固态电池的性能.最后,本文分析了目前该领域面临的问题和挑战,指出未来发展趋势.  相似文献   

10.
该文是一篇近两个月的锂电池文献评述,以"lithium"和"batter*"为关键词检索了 Web of Science从2021年2月1日至2021年3月31日上线的锂电池研究论文,共有2566篇,选择其中100篇加以评论.本文对层状氧化物正极材料的研究集中在掺杂、包覆、前驱体及合成条件、循环中的结构变化,其中,高镍三元材料是讨论的重点.硅基负极材料方面关注体积膨胀及其带来的后续问题,相关研究内容包括对硅颗粒的包覆、复合硅基负极及其结构调控.金属锂、碳负极和氧化物负极等其他负极也有涉及,其中,对金属锂负极界面的研究和三维结构负极设计是重点.固态电解质的研究主要包括对硫化物固态电解质、氧化物固态电解质、聚合物-氧化物复合固体电解质的合成、掺杂以及相关性能研究.液态电解液方面主要为针对适应高电压三元层状氧化物正极和金属锂负极的电解液及添加剂研究,还有添加剂对正/负极界面层的调控作用和对石墨、硅负极的性能提升.对于固态电池,复合正极制备和设计、活性材料的表面修饰、锂金属/固态电解质界面等都是主要研究内容.其他电池技术偏重于基于催化、高离子/电子导电基体的复合锂硫正极构造以及"穿梭效应"的抑制.表征分析部分涵盖了金属锂沉积,石墨和硅负极的体积膨胀问题,正极的微结构、过渡金属元素溶解和产气以及固态电池中电解质分解、界面接触损失等问题.理论模拟工作涉及固态电池中界面接触损失、锂负极的沉积和剥离、电极界面稳定性.界面主要涉及固态和液态电池中SEI及其可视化表征.  相似文献   

11.
To improve the safety of lithium-ion batteries, we studied non-flammable electrolytes made by adding several types of phosphazene-based flame retardants to conventional electrolytes and evaluated their conductivities, electrochemical characteristics, and the effects of flame retardants in terms of safety. Cell performance tests and abuse tests were also conducted using cylindrical test cells. The conductivity of electrolytes decreased when phosphazene-based flame retardants were added to the conventional electrolytes. The reason for this decrease in conductivity may be the increase in electrolyte viscosity caused by adding flame retardants. The conductivity decrease led to a decrease in cell capacity at high current density and at low temperature. However, the cell capacities at 0.2 CA (CA = 750 mA) and at 25 °C were almost the same as those of cells using conventional electrolytes. Flame tests showed that the electrolytes with flame retardants exhibited flame resistance consistent with UL-94V0. We also carried out several abuse tests to check the safety improvements. Both overcharge tests up to 10 V and heating tests up to 200 °C were completed without any extraordinary heat generation. Heating tests using a burner revealed the self-extinguishing properties of these electrolytes which were gushed out by venting. These results indicate that electrolytes with phosphazene-based flame retardants are effective for making lithium-ion batteries safe.  相似文献   

12.
Protonated weak acids commonly used in microbial electrolysis cell (MEC) solutions can affect the hydrogen evolution reaction (HER) through weak acid catalysis, and by lowering solution resistance between the anode and the cathode. Weak acid catalysis of the HER with protonated phosphate, acetate, and carbonate electrolyte species improved MEC performance by lowering the cathode's overpotential by up to 0.30 V at pH 5, compared to sodium chloride electrolytes. Deprotonation of weak acids into charged species at higher pHs improved MEC performance primarily by increasing the electrolyte's conductivity and therefore decreasing the solution resistance between electrodes. The potential contributions from weak acid catalysis and solution resistance were compared to determine whether a reactor would operate more efficiently at lower pH because of the HER, or at higher pH because of solution resistance. Phosphate and acetate electrolytes allowed the MEC to operate more efficiently under more acidic conditions (pH 5). Carbonate electrolytes increased performance from pH 5 to 9 due to a relatively large increases in conductivity. These results demonstrate that specific buffers can substantially contribute to MEC performance through both reduction in cathode overpotential and solution resistance.  相似文献   

13.
In this work we report a non-aqueous electrolyte that supports long-term operation of the Li/air battery in dry ambient environments based on a non-hydrolytic LiSO3CF3 salt and a low volatility propylene carbonate (PC)/tris(2,2,2-trifluoroethyl) phosphate (TFP) solvent blend. By measuring and analyzing the viscosity of PC/TFP solvent blends, the ionic conductivity of electrolytes, and the discharge performance of Li/air cells as a function of the PC/TFP weight ratio, we determined the best composition of the electrolyte is 0.2 m (molality) LiSO3CF3 7:3 wt. PC/TFP for Li/O2 cells and 0.2 m LiSO3CF3 3:2 wt. PC/TFP for Li/air cells. Discharge results indicate that Li/air cells with the optimized electrolyte are significantly superior in specific capacity and rate capability to those with baseline electrolytes. More interestingly, the improvement in discharge performance becomes more significant as the discharge current increases or the oxygen partial pressure decreases. These results agree neither with the viscosity of the solvent blends nor the ionic conductivity of the electrolytes. We consider that the most likely reason for the performance improvement is due to the increased dissolution kinetics and solubility of oxygen in TFP-containing electrolytes. In addition, the electrolyte has a 5.15 V electrochemical window, which is suitable for use in rechargeable Li/air batteries.  相似文献   

14.
《Journal of power sources》1997,68(2):492-496
Lithium cycling efficiency for ternary solvent (mol ratio 1:1:1) electrolytes of different molar conductivities containing LiPF6 and LiClO4 with ethylene carbonate (EC)—dimethyl carbonate (DMC) binary mixture of constant mixed ratio (mol ratio 1:1) was investigated by galvanostatic experiments at 25 °C. The solvents applied to the EC-DMC mixture are 1,2-dimethoxyethane (DME), 2-methyltetrahydrofuran (2-MeTHF) and ethylmethyl carbonate (EMC). The molar conductivity of the EC-DMC-DME ternary solvent electrolytes gradually increased with the addition of DME. However, the molar conductivities of the EC-DMC-2-MeTHF and EC-DMC-EMC ternary solvent electrolytes gradually decreased with the addition of 2-MeTHF and EMC. The decrease of the molar conductivity for these solutions is attributed to a decrease of the dissociation degree for electrolytes versus a decrease of the dielectric constant rather than that of the viscosity of the EC-DMC-2-MeTHF and EC-DMC-EMC ternary solvent mixtures. The lithium cycling efficiency of every ternary electrolyte containing LiPF6 was larger than those of the EC-DME, EC-EMC and EC-DMC binary electrolytes containing LiPF6 at about 20 cycles. Especially, the efficiency of LiPF6/EC-DMC-DME electrolyte became about 80% at 40 cycles. The nickel (working) electrode surface in binary and ternary electrolytes after dissolution by cyclic voltammetry was observed by atomic force microscopy. The formation of lithium dendrite was already observed during the first cycle in the LiPF6/EC-DMC electrolyte. However, it was found that the addition of ethers such as DME and 2-MeTHF to the LiPF6/EC-DMC electrolyte was helpful to suppress the formation of lithium dendrite on the nickel electrode.  相似文献   

15.
The paper reviews properties of room temperature ionic liquids (RTILs) as electrolytes for lithium and lithium-ion batteries. It has been shown that the formation of the solid electrolyte interface (SEI) on the anode surface is critical to the correct operation of secondary lithium-ion batteries, including those working with ionic liquids as electrolytes. The SEI layer may be formed by electrochemical transformation of (i) a molecular additive, (ii) RTIL cations or (iii) RTIL anions. Such properties of RTIL electrolytes as viscosity, conductivity, vapour pressure and lithium-ion transport numbers are also discussed from the point of view of their influence on battery performance.  相似文献   

16.
The suitability of electrolytes using mixed solvents has been examined for ambient temperature, rechargeable lithium batteries. Sulfolane (S) and dimethylsulfoxide (DMSO) have been used as base solvents because of their high permittivity, and ethers such as 1,2-dimethoxyethane (DME) have been blended as a low viscosity co- solvent. This blending has been found to yield electrolytes with a high conductivity, and maximum values are observed in solutions with 40 – 90 mol% ether. The cycling characteristics of lithium are also improved by blending the ethers. The coulombic efficiencies on a nickel substrate are 80% in S-DME/LiPF6 and DMSO-DME/LiPF6 solutions. The lithium electrode characteristics are markedly dependent on the type of co- solvent ether, as well as on the electrolytic salt. The results of the conductance behaviour and the electrode characteristics are discussed in terms of ionic structure in the mixed solvent and the state of the electrode/electrolyte interphase.  相似文献   

17.

Large eddy simulation (LES) stress and scalar flux subgrid scale models are evaluated in the context of buoyant jets. Eddy viscosity, eddy diffusivity (including formulations of the generalized gradient diffusion hypothesis), “structure” (Bardina and Leonard), mixed, and dynamic models are scrutinized. The performance of the models is examined in terms of the main flow variables and also with respect to the “internal” behavior of the models in terms of the relative contributions to the turbulent kinetic energy budget.  相似文献   

18.
Some basic properties and compatibility toward lithium electrode for electrolytes based on substituted imidazolium ionic liquid have been investigated. The ionic liquids having imidazolium cation substituted by methylcarboxyl or cyano group suffers from low conductivity. However, reversible lithium deposition–dissolution process was observed in electrolytes based on these electrolytes. In particular, lithium salt solution in cyanomethyl-substituted imidazolium ionic liquid provided similar cycle efficiency to conventional organic solvent electrolyte at constant-current condition. The mixed ionic liquid electrolyte containing the cyanomethyl-substituted ionic liquid also provided good cycle performance despite of containing large amount of 1-ethyl-3-methyl imidazolium (EMI)-based ionic liquid. Such mixed electrolyte system serves both the stability of lithium electrode process and valid conductivity for practical use.  相似文献   

19.
The activity and stability of non-precious metal catalysts (NPMCs) for the oxygen reduction reaction (ORR) in both acid and alkaline electrolytes were studied by the rotating disk electrode technique. The NPMCs were prepared through the pyrolysis of cobalt-iron-nitrogen chelate followed by combination of pyrolysis, acid leaching, and re-pyrolysis. In both environments, the catalysts heat-treated at 800-900 °C exhibited relatively high activity. Particularly, an onset potential of 0.92 V and a well-defined limiting current plateau for the ORR was observed in alkaline medium. The potential cycling stability test revealed the poor stability of NPMCs in acid solution with an exponential increase in the performance degradation as a function of the number of potential cycling. In contrast, the NPMCs demonstrated exceptional stability in alkaline solution. The numbers of electron transferred during the ORR on the NPMCs in acid and alkaline electrolytes were 3.65 and 3.92, respectively, and these numbers did not change before and after the stability test. XPS analysis indicated that the N-containing sites of catalysts are stable before and after the stability test when in alkaline solution but not in acid solution.  相似文献   

20.
采用咪唑类离子液体1-乙基-3-甲基咪唑四氟硼酸盐(EMIBF4)调制了两款耐压电解液并用于大容量圆柱式超级电容器中,考察了电容器的容量、内阻、循环等性能,分析了高压循环过程中电容器的发热行为。结果表明:相比商用耐压电解液,两款自制电解液均能一定程度提高电容器的能量密度,但是由于内阻的增加而引起功率密度有所下降。商用耐压电解液由于表面温升过快,难以在2.85 V及以上电压正常循环,而两款自制电解液均显著减少了表面温升,改善了电容器的高压循环能力。另一方面,降低电流密度可以有效控制超级电容器的表面温升速度,这使得各款电容器都能维持稳定的3 V限压循环,EMIBF4/AN电解液甚至可以支持3.2 V上限循环,此时基于超级电容器总重量计算的最大能量密度与最大功率密度分别达到8.62 W·h/kg和16.18 kW/kg。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号