首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
张利静  张武高 《柴油机》2008,30(3):24-30
综述了车载燃料重整制氢技术的现状,详细介绍了二甲醚水蒸气催化重整制氢的原理及其应用。跟踪了车载燃料重整制氢——燃料废气重整再循环(Reformed Exhaust Gas Recirculation,简写为REGR)技术在发动机上的应用状况,并分析了二甲醚水蒸气催化重整对二甲醚发动机性能和排放的影响。  相似文献   

2.
制氢技术是发展燃料电池的关键技术之一,而目前研究较多且具有良好应用前景的制氢技术是乙醇水蒸气重整制氢法制氢。综述了国内水蒸气重整法、部分氧化法、氧化重整法等乙醇重整制氢法的研究进展,同时综述了乙醇水蒸气重整制氢催化剂助剂、载体的研究进展。指出了在较低温度下以高转化率、低C0选择性、高氢气选择性制氢是乙醇制氢技术研究的方向。  相似文献   

3.
采用浸渍法制备Ni/CaO、Fe/CaO、Ni-Fe/CaO催化剂,用于生物油模化物乙酸水蒸气催化重整反应.对反应前后催化剂进行BET、H2-TPR、CO2-TPD、XRD等表征.通过比较3种催化剂重整反应性能得出Ni/CaO催化剂具有最佳性能.进一步研究在Ni/CaO催化剂参与下反应温度、水碳比(S/C)、液时空速(...  相似文献   

4.
甲烷水蒸气重整(SRM)是简单经济的制氢方法。对甲烷水蒸气重整工艺的反应过程机理进行归纳,分析了制约甲烷水蒸气重整发展的各个因素,重点从催化剂的研究制备及分离强化技术等方面进行归纳总结,简述重整反应器的结构及特性。研究表明,制备活性高、抗积碳能力强、稳定性好的催化剂和氢气的分离提纯是未来重要的研究方向。  相似文献   

5.
为研究二甲醚的水蒸气重整制氢过程,设计了一种带有隔热套、瓦片式加热通道和催化反应床的重整反应器。建立了反应器的数学模型,并利用COMSOL软件对其仿真。试验研究了反应气体温度、水蒸气与二甲醚的物质的量比和反应器结构参数对二甲醚转化率、氢产率的影响。模拟结果显示了二甲醚水蒸气重整制氢过程中的各组分质量分布及不同温度、不同水醚物质的量比下二甲醚转化率和制氢率情况,给重整器的研究提供了参考。通过试验验证了模型的可行性,获得了微型催化重整床反应器的设计数据。结果显示较高的进口温度可以提升反应速率,从而提高二甲醚转化率;水醚物质的量比的提高促进了正反应,加快了二甲醚的消耗,提高了二甲醚的转化率和氢产率。  相似文献   

6.
利用固定床反应器对一系列自制催化剂Ni/CeO2-ZrO2和商业镍基催化剂Z417在生物油水溶性组分重整制氢反应中的催化性能进行考察,研究了活性金属Ni的负载量、反应温度、水油比对催化剂活性的影响.实验结果表明:Ni负载量为12wt%的催化剂Ni/CeO2-ZrO2在生物油水溶性组分重整制氢反应中表现出最佳催化活性,当反应温度为800C和水油比为4.9时,氢产率达到最大值67.8%,氢的选择性较高,为61.8%.  相似文献   

7.
《可再生能源》2017,(2):185-191
采用浸渍法制备了Ni/γ-Al_2O_3,Ni/HZSM-5和Ni/KZSM-5 3种负载型催化剂,利用XRD,XPS,BET,NH3-TPD,CO2-TPD和H2-TPR等手段对催化剂的晶相、比表面积、酸/碱性等物化特性进行了表征,并通过固定床反应器对比考察了不同载体的Ni基负载型催化剂对乙醇水蒸气重整制氢的催化性能。实验结果表明:由于HZSM-5的酸性较强,Ni/HZSM-5催化剂不能有效催化乙醇水蒸气重整制氢,主要产物为乙烯;由于KZSM-5具有一定的碱性并有较高的比表面积,Ni/KZSM-5催化剂对乙醇水蒸气重整制氢表现出了较高的催化活性,当反应温度为450℃时,乙醇转化率为100%,氢气选择性达到65.0%,且反应积碳率仅为3.0%;由于载体的碱性较弱,导致产物中含有部分乙烯,降低了氢气选择性,从而Ni/γ-Al_2O_3催化剂的活性低于Ni/KZSM-5催化剂。  相似文献   

8.
文中简单介绍了乙酸和乙醇作为模型化合物时其反应机理和催化剂的研发,以及生物油直接催化重整相关方面的认识。同时介绍了传统蒸汽重整的反应机理。  相似文献   

9.
用共沉淀耦合机械混合法制备Cu-Zn-Al-Cr/ZSM-5双功能催化剂,与Cu-Zn-Al/ZSM-5催化剂进行对比研究,并考察其在二甲醚水蒸气重整制氢反应中的催化性能,研究ZSM-5在二甲醚水解反应以及铜基催化剂Cu-Zn-Al-Cr在甲醇水蒸气重整制氢反应中的活性,同时采用热重、X射线衍射、H2程序升温还原等手段对催化剂的焙烧温度、物相结构、还原性能等进行分析。结果表明,Cu-Zn-Al-Cr/ZSM-5双功能催化剂的性能明显优于Cu-Zn-Al/ZSM-5催化剂,同时Cu-Zn-Al-Cr/ZSM-5双功能催化剂在二甲醚水蒸气重整制氢反应中有较好的低温活性和CO选择性,当反应温度为280℃,水醚比为7∶1时,二甲醚转化完全,氢气收率达到85.7%,反应温度低于240℃时,无CO生成;同时催化剂之间的耦合作用使Cu-Zn-Al-Cr/ZSM-5催化剂在较高温度下具有较好的活性和稳定性。  相似文献   

10.
崔莉 《中外能源》2013,(12):66-70
随着加工原油质量变重变劣,且环保要求日趋严格,以及市场对优质汽、柴油需求量的增加,炼油厂需要进一步提高加氢工艺装置的加工能力和深度。催化重整装置的副产氢气可为炼油厂加氢精制、加氢改质、加氢裂化等加氢装置提供氢源。催化重整氢气收率与工艺过程类型、原料组成、催化剂类型和操作参数等有关。催化重整工艺过程类型选用连续再生式重整,氢气收率和氢气纯度均比半再生重整高。选用环烷烃含量高的催化熏整原料,有利于提高重整氢的收率,这是由于产生氢气的环烷脱氢反应发生的越多,氢气收率越高。催化重整催化剂选用高选择性、低积炭的催化剂,有利于提高重整氢收率,并可提高催化剂的选择性和寿命。改善重整过程的操作参数(如适当提高反应温度和降低反应压力等),可以提高重整氢收率,但是不推荐采用提高空速和降低氢油比的方法来提高氢气收率。此外,实践证实,从重整原料中脱除大部分c。烃(包括环烷烃、苯和己烷),有利于增加催化重整氢气净收率,同时可以提高汽油收率,增大汽油辛烷值,并降低炼油厂苯的生成。  相似文献   

11.
Hydrogen production from renewable resources has received extensive attention recently for a sustainable and renewable future. In this study, hydrogen was produced from catalytic steam reforming of the aqueous fraction of crude bio-oil, which was obtained from pyrolysis of biomass. Five Ni–Al catalysts modified with Ca, Ce, Mg, Mn and Zn were investigated using a fixed-bed reactor. Optimized process conditions were obtained with a steam reforming temperature of 800 °C and a steam to carbon ratio of 3.54. The life time of the catalysts in terms of stability of hydrogen production and prohibition of coke formation on the surface of the catalyst were carried out with continuous feeding of raw materials for 4 h. The results showed that the Ni–Mg–Al catalyst exhibited the highest stability of hydrogen production (56.46%) among the studied catalysts. In addition, the life-time test of catalytic experiments showed that all the catalysts suffered deactivation at the beginning of the experiment (reduction of hydrogen production), except for the Ni–Mg–Al catalyst; it is suggested that the observation of abundant amorphous carbon formed on the surface of reacted catalysts (temperature programmed oxidation results) may be responsible for the initial reduction of hydrogen production. In addition, the Ni–Ca–Al catalyst showed the lowest hydrogen production (46.58%) at both the early and stabilized stage of catalytic steam reforming of bio-oil.  相似文献   

12.
Catalytic steam reforming of bio-oil is a promising process for producing hydrogen in a sustainable environmentally friendly way that can improve the utilization of local resources (natural sources or wastes). However, there remain drawbacks such as coke formation that produce operational problems and deactivation of the catalysts. Coprecipitated Ni/Al catalysts are here used in a fluidized bed for reforming at 650 °C of acetic acid as a model compound of bio-oil–aqueous fraction. Different strategies are applied in order to study their effects on the catalytic steam reforming process: modification of the catalyst by increasing the calcination temperature or adding promoters such as calcium. The addition of small quantities of oxygen is also tested resulting in an optimum percentage to achieve a high carbon conversion process with less coke and without a hydrogen yield penalty production. The results for catalytic steam reforming are compared with other ones from literature.  相似文献   

13.
A high energy content (∼122 MJ/kg H2) and presence of hydrogen-bearing compounds abundance in nature make hydrogen forth runner candidate to fulfill future energy requirements. Biomass being abundant and carbon neutral is one of the promising source of hydrogen production. In addition, it also addresses agricultural waste disposal problems and will bring down our dependency on fossil fuel for energy requirements. Biomass-derived bio-oil can be an efficient way for hydrogen production. Acetic acid is the major component of bio-oil and has been extensively studied by the researchers round the globe as a test component of bio-oil for hydrogen generation. Hydrogen can be generated from acetic acid via catalytic steam reforming process which is thermodynamically feasible. A number of nickel-based catalysts have been reported. However, the coke deposition during reforming remains a major challenge. In this review, we have investigated all possible reactions during acetic acid steam reforming (AASR), which can cause coke deposition over the catalyst surface. Different operating parameters such as temperature and steam to carbon feed ratio affect not only the product distribution but also the carbon formation during the reaction. Present review elaborates effects of preparation methods, active metal catalyst including bimetallic catalysts, type of support and microstructure of catalysts on coke resistance behavior and catalyst stability during reforming reactions. The present study also focuses on the effects of a combination of a variety of alkali and alkaline earth metals (AAEM) promoters on coke deposition. Effect of specially designed reactors and the addition of oxygen on carbon deposition during AASR have also been analyzed. This review based on the available literature focuses mainly on the catalyst deactivation because of coke deposition, and possible strategies to minimize catalyst deactivation during AASR.  相似文献   

14.
Increase in energy demand and growing environmental awareness has increased interest for alternative renewable energy sources over the last few years. Hydrogen produces only water during combustion, and therefore, it is seen as an alternative fuel for locomotive application. Nonetheless, hydrogen is not an energy source; rather it is an energy carrier. Different techniques are being explored to find an economical way of generating hydrogen from renewable resources. Hydrogen production from water using sunlight is still expensive. Biomass is another alternative to produce hydrogen. Bio-oil derived from biomass using a fast pyrolysis is a potential source for hydrogen production. Although different techniques have been employed to produce hydrogen from bio-oil, significant effort has been put into steam reforming process. This paper reviews major hydrogen production techniques with a great deal of importance given to steam reforming. The important factors that are known to affect hydrogen yield are temperature, steam to carbon ratio, and catalyst type. Literature review of bio-oil steam reforming technique has been done, and a comparison of experimental conditions has been carried out. However, as a major shortcoming, this technique is accompanied by the formation of carbonaceous deposits over the catalyst surface rendering it inactive and requiring frequent regeneration. Coke formation has been cited as the major disadvantage of bio-oil reforming, and it is more pronounced when Ni based catalysts are used.  相似文献   

15.
Steam reforming of biomass pyrolysis oil or bio-oil derivatives is one of the attractive approaches for hydrogen production. The current research focused on the development of promising catalysts with favorable catalytic activity and high coke resistance. Noble metal such as Rh has been proven to achieve promising reforming reaction efficiencies. However, Ni has attracted considerable attention owing to its stability, cost effectiveness, and good activity in breaking C–C and C–H bonds. Nevertheless, Ni-based catalysts have serious carbon deposition problems arising from chemical poisoning, metal sintering, and poor metal dispersion. This paper attempted to review the current trends in catalyst development considering the aspects of supports, metals, and promoters as an effort to find possible solutions for the limitations of Ni-based catalysts. The present review also covered the current understanding on the reaction mechanisms as well as the future prospects in the field of steam reforming catalysts.  相似文献   

16.
The development of a high performance and low cost catalyst is an important contribution to clean hydrogen production via the catalytic steam reforming of renewable bio-oil. Solid waste coal ash, which contains SiO2, Al2O3, Fe2O3 and many alkali and alkaline earth metal oxides, was selected as a superior support for a Ni-based catalyst. The chemical composition and textural structures of the ash and the Ni/Ash catalysts were systematically characterized. Acetic acid and phenol were selected as two typical bio-oil model compounds to test the catalyst activity and stability. The conversion of acetic acid and phenol reached as much as 98.4% and 83.5%, respectively, at 700 °C. It is shown that the performance of the Ni/Ash catalyst was comparable with other commercial Ni-based steam reforming catalysts.  相似文献   

17.
Biomass-derived substrates such as bio-oil and glycerol are gaining wide acceptability as feedstocks to produce hydrogen using a steam reforming process. The wide acceptability can be attributed to a huge amount of glycerol and bio-oil obtained as by-products of biodiesel production and pyrolysis processes. Several parameters have been reported to affect the production of hydrogen by biomass steam reforming. This study investigates the effect of non-linear process parameters on the prediction of hydrogen production by biomass (bio-oil and glycerol) steam reforming using artificial neural network (ANN) modeling technique. Twenty different multilayer ANN model architectures were tested using datasets obtained from the bio-oil and glycerol steam reforming. Two algorithms namely Levenberg-Marquardt and Bayesian regularization were employed for the training of the ANNs. An optimized network configuration consisting of 3 input layer 14 hidden neurons, 1 output layer, and 3 input layer, 5 hidden neurons, and 1 output layer were obtained for the Levenberg-Marquardt and Bayesian regularization trained network, respectively for hydrogen production by bio-oil steam reforming. While an optimized network configuration consisting of 5 input nodes, 9 hidden neurons, 1 output node, and 5 input nodes, 8 hidden neurons, and 1 output node were obtained for Levenberg-Marquardt and Bayesian regularization trained network, respectively for hydrogen production by glycerol steam reforming. Based on the optimized network, the predicted hydrogen production from the bio-oil and glycerol steam agreed with the actual values with the coefficient of determination (R2) > 0.9. A low mean square error of 3.024 × 10−24 and 6.22 × 10−15 for the optimized for Levenberg-Marquardt and Bayesian regularization-trained ANN, respectively. The neural network analyses of the two processes showed that reaction temperature and glycerol-to-water molar ratio were the most relevant factors that influenced the production of hydrogen by bio-oil and glycerol steam reforming, respectively. This study has demonstrated the robustness of the ANN as a technique for investigating the effect of non-linear process parameters on hydrogen production by bio-oil and glycerol steam reforming.  相似文献   

18.
A novel process for hydrogen production via bio-oil catalytic reforming without steam addition was proposed. The liquid feedstock was a distillation fraction from crude bio-oil molecular distillation. The fraction obtained was enriched with the low-molecular-weight organics (acids, aldehydes, and ketones), and contained nearly all of the water from crude bio-oil. The highest catalytic performance, with a carbon conversion of 95% and a H2 yield of 135 mg g−1 organics, was obtained by processing the distillate over Ni/Al2O3 catalyst at 700 °C. The steam involved in the reforming reaction was derived entirely from the water in the crude bio-oil. The fresh and spent catalysts were characterized by N2-physisorption, thermogravimetric analysis, and high-resolution transmission electron microscopy. To further understand the reaction mechanisms, symmetric density functional theory calculations for decomposition were performed on four model compounds in bio-oil (acetic acid, hydroxyacetone, furfural, and phenol) over the Ni(111) surface. In addition, the decomposition of H2O∗ to OH∗ and O∗ and their subsequent steam reforming reactions with carbon precursors (CH∗ and CH3C∗) were also examined.  相似文献   

19.
Hydrogen production by bio-oil steam reforming is an advanced production technology. It is a good method of coupling waste heat utilization with bio-oil steam reforming to produce hydrogen, which increases the cleaning ability of the bio-oil steam reforming system. A multi-zone steam generator using waste heat has been proposed, which can produce the heat source and steam source of the hydrogen system. The DEM model of the multi-zone steam generator was set up. The model has been used to investigate the effects of particle sizes (40 mm–80 mm). With increasing particle size, the flow index and the flow uniformity gradually decrease, the vertical velocity gradient increases in the area on both side with the zone steam generator, and the vertical velocity fluctuation amplitude gradually increases. So, the hydrogen production decreases from the particle size increasing.  相似文献   

20.
Hydrogen production by steam reforming of ethanol over mesoporous Ni–Al2O3–ZrO2 xerogel catalysts (denoted as XNiAZ) with different nickel content (X, wt%) was studied. A single-step epoxide-driven sol–gel method was employed for the preparation of the catalysts. The effect of nickel content of XNiAZ catalysts on their physicochemical properties and catalytic activities was investigated. All the XNiAZ catalysts exhibited a well-developed mesoporous structure and they dominantly showed an amorphous NiO–Al2O3–ZrO2 composite phase, leading to high dispersion of NiO. Nickel surface area and reducibility of XNiAZ catalysts showed volcano-shaped trends with respect to nickel content. Nickel surface area of XNiAZ catalysts played a key role in determining the catalytic performance in the steam reforming of ethanol; an optimal nickel content was required for maximum production of hydrogen. Among the catalysts tested, 15NiAZ catalyst with the highest nickel surface area exhibited the best catalytic performance in the steam reforming of ethanol. In addition, 15NiAZ catalyst showed high and stable hydrogen yields under different total feed rate, demonstrating its potential applicability in large-scale hydrogen production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号