首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为预测尾矿库溃坝对下游的影响,基于修正的Shields曲线,改进了DB-IWHR模型中临界剪应力的计算,并通过唐家山堰塞坝实例验证了改进DB-IWHR模型具有更高的溃坝溃口和下泄流量过程演化精度。采用改进DB-IWHR模型及二维水动力模型建立了某尾矿库溃坝影响数值分析模型,预测了尾矿库漫顶溃坝时下游的淹没范围、淹没深度、淹没出现时间以及溃坝对下游关键敏感点的影响程度,分析了改进模型对溃口初始宽度及冲刷侵蚀参数的敏感性,结果表明:改进DB-IWHR模型结合二维水动力模型能较好地模拟尾矿库溃坝过程和下泄沙流演进过程,结果符合沙流演进的一般规律;该模型对于初始溃口宽度的敏感性不强,但对于冲刷侵蚀参数的敏感性较强。  相似文献   

2.
尾矿库溃坝模型设计及试验方法   总被引:1,自引:0,他引:1  
在简要回顾前人有关模拟方法研究成果的基础上,分析了尾矿库溃坝及其模型试验的特点,理清了设计思路,提出了模型相似条件,然后以预备试验为依托,通过模型尾沙选择与要求、模型制作、测验手段等环节的研究,进一步论述了尾矿库溃坝模型的设计方法与试验方法。尾矿库溃坝模型设计应遵循水流重力相似、水流阻力相似、水流挟沙相似、尾沙悬移相似、河床变形相似及尾沙起动相似等条件;模型沙可选择容重适中、化学性质稳定的拟焦沙;模型试验的工作步骤:给出尾矿库最可能的溃坝方式及对下游影响最大的典型情况,确定尾矿库最终高程,选配合适的模型沙,设计溃坝模型,测出尾矿库溃坝坝址流量、水位过程线和冲沙率以及向下游的洪水演进情况,提出可行的下游保护方案、工程措施及综合防治对策,确定尾矿库最终堆积标高。  相似文献   

3.
钟启明  陈生水  邓曌 《水利学报》2016,47(12):1519-1527
国内外大量模型试验表明,"陡坎"式冲蚀是均质土坝漫顶溃决的重要机理。近年来,各国学者开发了一系列的考虑"陡坎"式冲蚀的溃坝过程数学模型,但模型均采用了"陡坎"出现在下游坡脚的假设。通过大比尺均质土坝漫顶溃决模型试验发现,对于坝高较大的均质土坝,"陡坎"出现的位置与漫顶水头和下游坝坡坡比存在内在联系,且"陡坎"的移动速率与坝料的物理力学指标相关,因此初始冲坑的位置和"陡坎"移动参数的选取对于溃坝过程模拟结果的合理性具有重要意义。本文借鉴国内外的漫顶溃坝过程数学模型,提出一个可考虑均质土坝漫顶溃决过程中"陡坎"移动的数学模型。该模型通过漫顶水流特征和坝体形状参数确定下游坡初始冲坑的位置,采用能量分析方法模拟"陡坎"移动,并通过室内与现场模型试验提出可考虑坝料黏粒含量、含水率、干密度等指标的"陡坎"移动参数;利用基于水流剪应力原理的冲蚀速率公式模拟溃口纵向下切与横向扩展;采用宽顶堰流量公式计算溃口流量,通过极限平衡法分析溃坝过程中溃口边坡的稳定性,采用迭代的数值计算方法模拟整个溃坝过程。选择国内外典型的大比尺均质土坝漫顶溃坝试验和有实测资料的溃坝案例对模型进行验证,并研究了是否考虑"陡坎"冲蚀对溃坝模拟结果的影响;通过模型计算分析可以得出,本文提出的数学模型可合理模拟均质土坝的漫顶溃坝过程。  相似文献   

4.
尾矿库一旦溃决将造成巨大损失。文中针对徐家河南芬尾矿库的示例,开展了尾矿库溃坝计算,深入分析了坝体溃决宽度、溃决流量及沿程演进等指标。建立溃坝风险度评价模型,进行了尾矿库溃坝后果影响程度评价。通过坝址下游河段纵横断面测量和调查,分析河道各种频率下组合洪峰流量、相应水位及淹没范围,并对尾矿库漫顶溃决所造成的灾害进行风险评估。成果将对尾矿库安全运行及尾矿库下游受威胁地区的人民生命财产转移提供科学依据。  相似文献   

5.
均质土坝漫顶溃坝模型相似准则研究   总被引:5,自引:1,他引:4  
由于土石坝溃坝过程具有强非线性,溃坝机理非常复杂,土石坝溃坝模型试验相似理论研究有较大的难度。基于近年来南京水利科学研究院开展的5次国内外最高黏性土均质坝漫顶溃坝实体试验及20多组室内漫顶溃坝试验,"陡坎"式侵蚀被认为是土石坝漫顶溃坝的重要机理之一。从这一机理出发,该文推导获得了均质土坝漫顶溃坝过程模型试验的两个重要相似准则:"陡坎"移动速度相似比尺λR及溃口流量过程时间比尺λt。两次现场大尺度溃坝试验数据验证表明,该文获得的溃坝模型相似率能够较好的反演均质土坝漫顶溃坝过程,有较好的参考价值。  相似文献   

6.
尾矿库漫顶溃坝模型研究   总被引:13,自引:2,他引:11  
本文利用尾矿库模型设计方法建立了尾矿库物理模型,并利用三维地形观测装置、表面流场测量装置和自动水位测量仪等仪器,对尾矿坝溃口及坝体崩塌变化过程、下泄洪水演化过程等进行了观测。试验结果表明,尾矿坝因为块体坍塌的不确定性而使崩塌量呈锯齿状,流量过程也具有一定的波动性;溃坝洪水输移尾矿是包括一般挟沙和高含沙运动以及高强度推移质运动的复杂输沙过程。在根据模型试验获得的尾矿库漫顶溃坝物理图形基础上,采用边岸侵蚀和崩塌模式模拟溃口展宽过程,引入非平衡输沙理论及河流动力学输沙公式计算溃口通道的冲淤变形,建立了尾矿库漫顶溃坝洪水预测数学模型。利用本文试验资料的检验结果表明,本文建立的数学模型计算结果同测量资料颇为符合,可以预测尾矿库漫顶溃坝洪水流量及溃口变化过程。  相似文献   

7.
使用自行设计的尾矿库溃坝模拟实验装置,开展了在库水位变动下的尾矿库漫顶溃坝实验,观测了尾矿库的漫顶溃坝过程和溃口的形态发展过程,并对坝体的溃决模式进行了探讨。研究结果表明:在库内水位的上升过程中,坝体下沉密实,坝体自重增加,降低了尾矿砂的强度和尾矿坝的稳定性。在溃坝过程中,溃口的发展主要包括由水流冲刷引起的连续下切加深和溃口边坡失稳坍塌形成的横向展宽。在库内水流漫顶前,坝体因浸润线过高而出现尾砂渗流现象,并且局部出现失稳垮塌,形成溯源冲刷型破坏模式。库内水流漫顶后,水流漫过坝顶不断冲刷坝体而导致坝体溃决,类似于溢流冲刷型破坏模式。研究成果可以为我们对尾矿库溃坝提供更多的认识。  相似文献   

8.
变坝坡赤泥库漫顶溃坝模型试验研究   总被引:2,自引:1,他引:2  
赤泥是氧化铝厂生产排放的一种性质独特的弃渣,因颗粒极细,赤泥库一旦溃坝,具有特殊的规律。本文以某赤泥库及下游沟道为整体研究对象,采用尾矿库物理模型试验方法,对赤泥尾矿库漫顶溃坝的发展过程及其机理进行分析。其结果表明:赤泥尾矿库溃坝发展规律比较复杂,在过程上可划分为洪峰前段、洪峰段及洪峰后段,且每阶段都有接近动态平衡的趋势;较大的坝坡变化使坝面空间上存在冲淤分区现象。最后,推导了赤泥流在下游沟道内演进的最大淹没高度计算公式,并利用模型试验资料对该公式进行了检验。  相似文献   

9.
土石坝漫顶破坏溃口发展数值模型研究   总被引:7,自引:0,他引:7       下载免费PDF全文
我国已溃决土石坝中由于漫顶破坏而造成的比例高达50%以上,因此,开展土石坝漫顶溃决机理和溃口发展过程研究,正确预测溃口流量过程线及溃坝致灾后果很有必要.本文首先根据现场溃坝调查资料和大型溃坝试验结果,研究分析了土石坝的溃决机理和溃决过程,在此基础上提出了一个描述土石坝漫顶破坏溃口发展过程的数值模型.该模型采用高速水流泥沙输移公式来计算溃坝水流对溃口纵横向的连续冲蚀;采用溃口边坡稳定性分析来模拟边坡失稳坍塌所引起的间歇性横向扩展;通过楔块体力的平衡计算来模拟坝体突发性崩塌所引起的溃口增大现象;通过下游坝体冲槽和坝顶溃口流量平衡来建立两者发展过程的相互影响.最后利用该模型计算分析了板桥水库土石坝发生漫顶溃决的溃口发展过程及溃口流量过程线,模拟结果与实测资料基本一致,从而证实了该模型的合理性.  相似文献   

10.
根据土坝漫顶溃坝特点,建立了土坝漫顶溃坝分区异步元胞自动机模型,在模型中考虑了不同分区的演化特性,提出了不同区域的径流规则、冲刷规则和坍塌规则,考虑了抗冲性能分布差异对土坝漫顶溃坝过程的影响,该模型能够更加准确地模拟土坝漫顶溃坝全过程。结果表明,溃坝初期,冲刷首先从背水坡发展,背水坡坡面上也会形成冲沟;考虑坝体纵向和横向坍塌影响后,溃坝发展过程比较快,伴随着坝体纵向和横向坍塌,坝体冲刷迅速向坝顶方向发展,直至形成溃口。  相似文献   

11.
矿山开采中尾矿库对下游人员的生命、财产安全与生态都是一个潜在危险源,由此而引起的工程事故也屡见不鲜。为研究尾矿库的溃坝过程及对下游的影响情况,以拟建尾矿库为对象,通过模型试验系统研究了整个溃坝过程中的坝体失稳的形态变化、水砂流向下游的演进过程、水砂流的淹没范围,以及溃坝流场的演进过程。研究结果表明,模型试验中整个溃坝过程共历时30min,下游上地村居民点完全被淹没,时州村居民点左岸部分高程较大房屋未被淹没,坝脚区域尾砂淤积量约为总溃泄量的36%,水砂流的流速受地形、地势及流经长度影响较大,研究成果可为尾矿库及类似尾矿库的工程论证与方案设计提供依据。  相似文献   

12.
尾矿库溃坝研究综述   总被引:23,自引:2,他引:21  
尾矿库溃坝研究主要包括尾矿坝坝体失稳和泥石流的演进两部分.首先对尾矿库坝体失稳原因、机理和计算模型进行了综述,目前尾矿坝失稳计算模型研究主要集中在尾矿坝静力抗滑稳定和地震作用下尾矿砂的液化判别,而对渗透变形和洪水漫顶导致的尾矿坝渐近失稳模型研究较少,同时对地震作用下尾矿砂液化后流滑变形稳定分析的研究也较少;其次,对尾矿坝失稳后泥石流的物理性质、流变模型、演进计算模型进行了综述,目前尾矿库溃坝泥石流演进计算模型中存在大量的假设,包括对溃坝范围、溃坝过程、溃口大小的假设等,这对泥石流演进分析带来一定的偏差.总之,尾矿库溃坝计算模型还不完善,需要借助土力学、水力学和泥沙动力学等学科的交叉进一步研究.  相似文献   

13.
段文刚  周赤  杨金波 《人民长江》2013,44(11):76-80
为探索土坝漫顶冲蚀溃决过程与溃坝峰值流量的关系,采用室内系列水槽试验的技术手段,以无黏性宽级配砂砾料土坝为研究对象,研究洪水漫顶条件下坝体(1 m高)冲蚀过程和溃口水力要素变化过程。试验表明,由于漫顶泄流方式、筑坝材料级配和密实度不同,土坝漫顶冲蚀过程可分为逐层均匀冲蚀、全线漫顶冲蚀和陡坎瀑布状水流冲蚀3种;溃坝峰值流量与冲蚀过程密切相关,坝体溃决历时愈短,溃坝洪峰流量愈大;相同条件下,陡坎瀑布状水流冲蚀峰值流量较逐层均匀冲蚀增大约40%。  相似文献   

14.
以驮英水库施工围堰溃坝洪水分析为例,结合水库施工方案拟定不同溃坝计算工况,推求施工围堰遭遇超标准洪水漫顶造成围堰溃决后溃坝最大流量、溃坝洪水向下游演进过程,分析溃坝洪水对下游的淹没影响,为编制水库施工期安全度汛应急预案提供技术参考,为水库工程施工及下游防洪安全提供保障.  相似文献   

15.
为研究尾矿库溃坝后对下游村庄的影响,通过对比采取工程措施前后监测点水位及通过断面的流量流速变化,分析采取工程措施的有效性及必要性.本文以某实际尾矿库为例,通过FLOW-3D软件进行三维数值模拟,建立了尾矿库及其下游3km范围内的实体地形及房屋和村庄三维数值模型,对尾矿库逐渐溃坝的动态过程进行了模拟计算;并在原尾矿库模型...  相似文献   

16.
邓昌奇  杨晓燕 《吉林水利》2013,(2):36-38,42
本文根据漫顶溃坝的机理和过程,利用堰流公式,结合水量平衡原理和溃口发展模式的假定建立漫顶逐渐溃坝计算模型,并将该模型应用于甘肃党河土坝溃坝实例计算,模拟结果与实际较为吻合,可应用于实际工程溃坝分析。  相似文献   

17.
为避免土石坝漫顶后迅速溃决,采用水槽试验的手段对临时加高坝顶和在坝体下游面铺设防 水布两种工程除险措施进行了研究。试验发现,临时加高坝顶后,可以有效地减缓漫顶时间,推迟洪 峰的到来,但是临时加高坝顶会使坝前水位升高,使得溃坝形成的洪峰流量值增大,因此在实践中采 用该工程措施时要慎重。而在下游坡面铺设防水布后,可以有效地减缓下游面的冲刷速度,不仅可以 将整个溃坝历时延长,推迟洪峰的出现,同时形成的溃坝洪峰值也会有所降低,相比较而言,该措施 是一种比较适宜的工程应急除险措施。  相似文献   

18.
对偏远、闭库或缺少管理的少资料地区尾矿库进行溃坝前后的数值模拟和三维虚拟仿真,需要根据已有的低精度、少序列、多源异构数据重建三维模型。提出一种基于多源异构数据的少资料尾矿库溃坝前后三维模型快速重建方法,通过总结尾矿库溃坝前后特征,融合分析尾矿库的无人机、卫星、GNSS测量、图纸、洪痕等多源数据,利用样条函数插值方法,实现溃决尾矿库的坝体、库区和下游淹没影响区部分三维模型精细化重建,并以2008年山西襄汾尾矿库溃决事件为例,重建了襄汾尾矿库溃坝前后的地形、坝体、库区和下游影响区的三维模型。结果表明:该方法所建模型精度满足数值计算的需求,可为后续的分析计算和可视化仿真应用提供三维模型基础。  相似文献   

19.
利用黏土和黄砂混合配制试验筑坝材料,开展水槽试验,模拟均质土石坝漫顶破坏过程,研究溃坝模式对溃坝参数的影响。试验中观测到3种漫顶破坏模式:陡坎蚀退冲刷溃决模式(M1)、剪切蚀退坍塌溃决模式(M2)和浸泡剥蚀破坏模式(M3)。相同库容和坝高条件下,不同模式最大溃决流量差异较大:Qp(M2)>Qp(M1,M3);定义水流开始漫顶至水库内库存水流构成漫坝破坏的主要动力源的时间为漫顶临界时间TC,则TC(M2)<TC(M1)<TC(M3)。溃坝模式反映了漫顶流量、初始溃口、坝高和筑坝材料等因素对漫顶溃决的综合影响,是除坝高、库容外溃坝参数预测的重要影响因子。  相似文献   

20.
基于无人机航测生成的高精度数字高程模型(DEM)数据,采用深度积分的Massflow数值分析方法,开展了新疆某山区尾矿库溃坝数值模拟研究。结果显示了该尾矿库溃坝后矿砂运动过程,分析数值模拟结果得出:(1)溃坝后矿砂最终堆积呈现两部分,一部分在尾矿库库区下游,平均厚度约13 m,另一部分则堆积于环保库和下游河道附近,平均厚度达25 m,其中堆积厚度最深处在初期坝坝底正对的河流处,约29 m。(2)尾矿库溃坝整个运动过程可分为失稳启动、加速下滑以及减速堆积三个阶段,该尾矿库溃坝从启动到最终静止整个过程约3 000 s,最大运动速度介于21~29 m/s之间,其中失稳启动和加速下滑阶段均在短时间内迅速完成,减速堆积阶段时间占整个过程的93.33%,表明尾矿库溃坝初期矿砂流速较快,具有较强的破坏性。研究成果可用于分析尾矿库矿砂运动路径、淹没区域及沿程堆积情况等,对降低尾矿库溃坝风险和应急响应有重要指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号