首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
锂离子电池的高功率密度和高能量密度等特性使其成为电动汽车能源和新能源电网储能的重要载体。功率性能和安全特性是锂离子电池发展的两个主要挑战。钛酸锂Li4Ti5O12材料因具有良好的结构稳定性、安全性能、长循环寿命、高功率特性和高低温放电性能,被认为是锂电池负极材料的良好备选。综述了以钛酸锂材料为负极的锂离子电池的相关工作,介绍了钛酸锂材料的结构、电化学特性、制备方法和作为电池负极材料面临的主要问题,重点介绍了钛酸锂负极电池的全电池性能和健康状态研究等方面。  相似文献   

2.
兼具锂离子电池高能量密度和双电层电容器高功率特性的锂离子电容器成为了现今超级电容器性能提升的重点发展方向。本工作以高富锂金属氧化物Li2NiO2为锂离子电容器用负极锂源,将其与活性物复合组成正极电极,并制备出“无金属锂片”预嵌锂过程的300 F锂离子电容器,考察了金属氧化物Li2NiO2的理化性能与电化学特性、不同Li2NiO2添加量对锂离子电容器样品的电化学性能影响。结果表明,Li2NiO2材料具有398 mA·h/g的首次不可逆容量,首次放电不可逆率为94.8%。添加15%~20% Li2NiO2的样品在10 A电流下具有大于75%倍率特性以及91%的容量保持率。当Li2NiO2添加量为20%时,样品在1 A条件下具有400 F的容量,15.5 W·h/kg的能量密度以及11.3 kW/kg的功率密度,是一种制备工艺简单、性能优异的新型锂离子电容器。  相似文献   

3.
锂离子电池的成功商业化,起始于石油焦负极材料.负极作为锂离子电池必不可少的关键材料,目前主要集中在碳,钛酸锂以及硅基等合金类负极,采用传统的碳负极可以基本满足消费电子,动力电池,储能电池的要求,采用钛酸锂可以满足高功率密度,长循环寿命的要求,采用合金类负极材料有望进一步提高能量密度.本文小结了目前广泛使用和正在研究的锂离子电池负极材料的性能特点,讨论了下一代锂离子电池负极材料的研究和发展状况.  相似文献   

4.
新能源汽车的普及是推动绿色发展、保障能源安全的战略选择,是汽车行业碳减排的重要举措,并且对于我国实现碳中和、碳达峰的目标意义重大。锂离子动力电池作为新能源汽车的核心驱动力,其退役后的清洁处理和高效利用,关系到电动汽车行业能否实现绿色可持续发展。石墨具有可逆容量高、循环稳定性好等优点,被广泛地用于制备锂离子电池负极材料。因此,石墨负极材料的回收处理与资源循环应该引起高度重视。本文从深度净化、选择性提锂和残存电解质去除等角度,对废锂离子电池负极石墨回收处理技术进行了归纳和总结,梳理出再生石墨及其产品的资源循环利用途径,并基于全生命周期评价技术分析石墨回收技术的优缺点。最后,对锂离子电池负极石墨未来的回收处理与资源循环技术挑战和发展趋势进行展望,提出未来应着眼于厘清电池失效机理、实现全组分高效回收、坚持绿色化学新理念、拓宽高值化应用市场的四位一体发展模式。  相似文献   

5.
尖晶石型钛酸锂(Li4Ti5O12)在充放电过程中具有较高的安全性和结构稳定性,被认为是非常有潜力的锂离子电池负极材料。本文从工业应用的角度分析总结了目前Li4Ti5O12的主要制备方法及其优缺点、Li4Ti5O12的改性方法及其特点,并对钛酸锂材料今后的研究重点进行了预测。  相似文献   

6.
锂离子电容器属于非对称型超级电容器,通常由电池型负极和电容型正极共同置于有机锂盐溶液中组装而成,兼具超级电容器的高功率特性和锂离子电池的高能量密度,在智能电网、轨道交通、新能源汽车等多个领域具有广阔的应用前景。炭材料由于来源广泛、价格低廉、性能稳定,是锂离子电容器的首选电极材料。因此,炭基锂离子电容器具有竞争性的产业化前景。负极预嵌锂技术对于炭基锂离子电容器的电化学性能具有决定性影响。本文从锂源引入位置的角度,系统回顾了锂离子电容器负极预嵌锂技术的进展情况,并就负极预嵌锂过程中的关键控制因素做了梳理,有助于全面了解负极预嵌锂技术的研究现状,为锂离子电容器的进一步发展提供科学参考。  相似文献   

7.
分别以石墨和钛酸锂为负极活性物质,制备了尖晶石镍锰酸锂的32131型圆柱锂离子电池.石墨负极电池和钛酸锂负极电池容量分别为7.5 A·h和5.5 A·h,质量能量密度分别达到152 W·h/kg和81 W·h/kg.常温充放电循环测试结果表明,石墨和钛酸锂两种负极体系电池循环寿命将分别达到400次和1000次,这种循环寿命的差别主要体现在负极上,即正极材料中溶解的Mn在石墨负极表面沉积并持续催化SEI膜生成,减少了电池中可使用的活性Li+,进而导致电池寿命快速衰减;相比而言,钛酸锂负极表面不存在明显SEI,同时正极过量设计电池也使得钛酸锂体系电池的镍锰酸锂与电解液间的界面副反应低于石墨体系的负极过量设计电池.  相似文献   

8.
钛酸锂(LTO)电池因其优良的循环寿命、倍率性能和热安全性而备受青睐,然而关于电滥用和热滥用等对其电化学性能和热安全性的影响报道较少。本文以某商用圆柱形18650钛酸锂电池为实验对象,利用电化学工作站和加速量热仪(ARC)研究了以不同倍率的电流对钛酸锂电池进行轻度过度放电的工况(0.5 C、1 C、2 C、5 C、1 C 100圈循环)下其电学性能和热安全性特征。此外还进一步采用了“top-down”方式将上述电池拆解并分离出正负极材料,并利用X射线衍射(XRD)和扫描电子显微镜(SEM)从微观角度剖析电极材料结构的变化。实验结果表明:(1)5 C及以下倍率单次过度放电对钛酸锂电池内阻的影响可忽略,而多次过放循环会大大加速电池的老化,表现为能量保持率快速下降和内阻增加,然而其热安全性未现明显下降;(2)大倍率(5 C)过度放电会显著降低钛酸锂电池的热安全性,表现为自产热起始温度(T1)降低,同时热失控过程中最高温度(T3)升高。负极钛酸锂材料颗粒的部分破碎粉化,以及负极表面生成不均匀的SEI膜是导致电池过度放电后热稳定性下降的主要因素。本研究揭示了过度放电对钛酸锂电池性能和安全性的潜在...  相似文献   

9.
锂离子电池正极材料含钴高达45%~50%,对废旧锂离子电池正极材料的资源化利用,不仅保护了环境,而且具有明显的经济效益。采用全湿法流程回收废旧锂离子电池中的钴和锂,用溶剂萃取法除杂和分离钴、锂,使得钴回收率高达99%以上。废电池中主要元素钴、铝、锂都有无害于环境的安全出路,不产生二次污染。  相似文献   

10.
以钛酸锂@活性炭复合材料作为正极,以商业化硬碳为负极同时将其与锂粉进行不同比例的复合,然后制备得到了预嵌锂硬碳//钛酸锂@活性炭锂离子电容器(LIC).本工作通过对硬碳与锂粉进行不同比例的复合制备得到了多种预嵌锂硬碳极片,然后,通过对所制备得到的预嵌锂硬碳极片组装的LIC进行了一系列电化学性能测试,研究了硬碳极片的嵌锂量对LIC比能量和比功率的影响.结果表明:将硬碳与锂粉进行复合可以在不明显减小LIC比功率的同时,大幅提升LIC的比能量,其中当硬碳与锂粉的质量比为3:1时所组装的LIC其能量密度最大可以达到29.69 W·h/kg,功率密度最大可以达到7.57 kW/kg,在电流密度为2 A/g时充放电循环2000次后容量保持率能够达到83.11%.  相似文献   

11.
In this paper, a facile strategy is proposed to controllably synthesize mesoporous Li4Ti5O12/C nanocomposite embedded in graphene matrix as lithium-ion battery anode via the co-assembly of Li4Ti5O12 (LTO) precursor, GO, and phenolic resin. The obtained composites, which consists of a LTO core, a phenolic-resin-based carbon shell, and a porous frame constructed by rGO, can be denoted as LTO/C/rGO and presents a hierarchical structure. Owing to the advantages of the hierarchical structure, including a high surface area and a high electric conductivity, the mesoporous LTO/C/rGO composite exhibits a greatly improved rate capability as the anode material in contrast to the conventional LTO electrode.  相似文献   

12.
As the anode material of lithium-ion battery, silicon-based materials have a high theoretical capacity, but their volume changes greatly in the charging and discharging process. To ameliorate the volume expansion issue of silicon-based anode materials, g-C3N4/Si nanocomposites are prepared by using the magnesium thermal reduction technique. It is well known that g-C3N4/Si nanocomposites can not only improve the electronic transmission ability, but also ameliorate the physical properties of the material for adapting the stress and strain caused by the volume expansion of silicon in the lithiation and delithiation process. When g-C3N4/Si electrode is evaluated, the initial discharge capacity of g-C3N4/Si nanocomposites is as high as 1033.3 mAh/g at 0.1 A/g, and its reversible capacity is maintained at 548 mAh/g after 400 cycles. Meanwhile, the improved rate capability is achieved with a relatively high reversible specific capacity of 218 mAh/g at 2.0 A/g. The superior lithium storage performances benefit from the unique g-C3N4/Si nanostructure, which improves electroconductivity, reduces volume expansion, and accelerates lithium-ion transmission compared to pure silicon.  相似文献   

13.
A promising anode material for hybrid electric vehicles (HEVs) is Li4Ti5O12 (LTO). LTO intercalates lithium at a voltage of ∼1.5 V relative to lithium metal, and thus this material has a lower energy compared to a graphite anode for a given cathode material. However, LTO has promising safety and cycle life characteristics relative to graphite anodes. Herein, we describe electrochemical and safety characterizations of LTO and graphite anodes paired with LiMn2O4 cathodes in pouch cells. The LTO anode outperformed graphite with regards to capacity retention on extended cycling, pulsing impedance, and calendar life and was found to be more stable to thermal abuse from analysis of gases generated at elevated temperatures and calorimetric data. The safety, calendar life, and pulsing performance of LTO make it an attractive alternative to graphite for high power automotive applications, in particular when paired with LiMn2O4 cathode materials.  相似文献   

14.
本研究以三元NCM为正极材料,钛酸锂LTO为负极材料制作了软包装锂离子电池,并通过固定正极容量,变化负极容量的方式设计4种不同的N/P比电池,并对不同N/P比钛酸锂电池的电池容量、高温存储和循环性能进行了研究,结果显示N/P比设计对正负极材料克容量发挥,电池容量发挥,高温存储和循环性能均具有较大影响。提高N/P比可以提高电池初始放电容量,提高正极克容量发挥。但提高N/P比会使得正极电极电位提高,特别是在接近满充电状态时,电解液易在正极侧发生氧化反应。而低的N/P比可以保证正极具有低的电极电位,从而降低在进行高温存储和循环测试时电池内部的副反应,有利于改善电池高温存储性能和循环性能。对能量密度要求不高时,为了保证长寿命循环和良好的高温性能,可以适当降低N/P比到0.85~0.9之间。  相似文献   

15.
直接在铜基底上生长具有不同金属离子的多孔过渡金属氧化物,成为有前途的锂离子电池电极材料的候选。本文提出了一种简便可行的低温水热沉积方法在铜基底上制备前驱物阵列。前驱物经过煅烧处理得到具有多孔特性Co3V2O8纳米片阵列,多孔纳米片阵列用作锂离子电池负极材料显示出了长期循环稳定性和高倍率性能。在1.0 A/g电流密度下,电池经过240次循环后显示出1 010 mA∙h/g的容量;在3.0 A/g的电流密度下,电池循环600次后显示出552 mA∙h/g的可逆容量。  相似文献   

16.
钛酸锂作为储能电池负极材料,在长循环和安全性上有突出的表现。通过对室温1C和2C倍率下循环的三元+钴酸锂/钛酸锂储能电池拆解,结合SEM、FTIR、XRD和EIS等分析手段,发现造成容量衰减和阻抗增大的原因出现在正极,由于正极与电解液发生反应,在表面生成界面膜,并且循环过程中界面膜不稳定,进一步消耗活性锂离子导致。另外,对这款电池的产气分析发现,所产生气体的主要成分为CO2和C2H6,原因可能是在制备电池过程中严格控制水分以及在电解液添加剂方面做了改进。  相似文献   

17.
锂离子电池凭借诸多优势广泛应用于便携式电子产品(3C)领域,在电动汽车及可穿戴设备方面具有巨大应用前景,是未来最具潜力的储能电池之一。作为一种锂离子电池负极材料,尖晶石型Li4Ti5O12相比石墨负极具有较高嵌锂电位,且"零应变材料"的特性决定Li4Ti5O12材料具有较好的循环稳定性及热稳定性,从而备受关注。本文简要介绍了钛酸锂(Li4Ti5O12)的结构和性能,详细阐明了Li4Ti5O12的嵌锂机制、制备及改性方法,总结了相应制备及改性方法对Li4Ti5O12材料的充放电特性、循环性能等电化学性能的影响,针对Li4Ti5O12的胀气产生原因、机制和胀气解决方法进行简单阐述,并对纯电动乘用车的应用前景提出了几点建议。  相似文献   

18.
合成了不同Rb掺杂量的钛酸锂(Li4-xRbxTi5O12; x = 0.010, 0.015, 0.020)作为锂离子电池的负极材料。测试结果显示,Rb离子掺杂有效增强了钛酸锂的电子电导率。相同的测试条件下,相比于未掺杂样品和高Rb含量掺杂样品(x = 0.015, 0.020),适量的Rb掺杂钛酸锂(Li3.99Rb0.01Ti5O12; x = 0.010)表现出最优的电化学性能。Li3.99Rb0.01Ti5O12材料表现出161.2 mA∙h/g的初始容量,且在1 C下经过1000次循环后容量保持率可达90.9%。此外,全电池Li3.99Rb0.01Ti5O12 // LiFePO4在0.5 C条件下首次放电容量为144 mA∙h/g,经过150次循环后,容量保持率为78.8%。  相似文献   

19.
Programmable design of nanocomposites of Li4Ti5O12 (LTO) conducted through hydrothermal route in the presence of ethylenediamine as basic and capping agent. In this work, effect of ZnO and Graphene on the Li4Ti5O12 based nanocomposites as anode materials investigated for Li-Ion battery performances. The full cells battery assembled with LTO based nanocomposites on Cu foil as the anode electrode and commercial LMO (LiMn2O4) on aluminum foil as cathode electrode. X-Ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy (FT-IR), along with Field Emission Scanning Electron Microscopy (FE-SEM) and Transmission electron microscopy (TEM) images was applied for study the composition and structure of as-prepared samples. The electrochemical lithium storage capacity of prepared nanocomposites was compared with pristine LTO via chronopotentiometry charge-discharge techniques at 1.5–4.0 V and current rate of 100 mA/g. As a result, the electrode which is provided by LTO/TiO2/ZnO and LTO/TiO2/graphene nanocomposites provided 765 and 670 mAh/g discharge capacity compared with pristine LTO/TiO2 (550 mAh/g) after 15 cycles. Based on the obtained results, fabricated nanocomposites can be promising compounds to improve the electrochemical performance of lithium storage.  相似文献   

20.
A three-electrode Li-ion cell with metallic lithium as the reference electrode was designed to study the charging process of Li-ion cells. The cell was connected to three independent testing channels, of which two channels shared the same lithium reference to measure the potentials of anode and cathode, respectively. A graphite/LiCoO2 cell with a C/A ratio, i.e., the reversible capacity ratio of the cathode to anode, of 0.985 was assembled and cycled using a normal constant-current/constant-voltage (CC/CV) charging procedure, during which the potentials of the anode and cathode were recorded. The results showed that lithium plating occurred under most of the charging conditions, especially at high currents and at low temperatures. Even in the region of CC charging, the potential of the graphite might drop below 0 V versus Li+/Li. As a result, lithium plating and re-intercalating of the plated lithium into the graphite coexist, which resulted in a low charging capacity. When the current exceeded a certain level (0.4C in the present case), increasing the current could not shorten the charging time significantly, instead it aggravated lithium plating and prolonged the CV charging time. In addition, we found that lowering the battery temperature significantly aggravated lithium plating. At −20 °C, for example, the CC charging became impossible and lithium plating accompanied the entire charging process. For an improved charging performance, an optimized C/A ratio of 0.85–0.90 is proposed for the graphite/LiCoO2 Li-ion cell. A high C/A ratio results in lithium plating onto the anode, while a low ratio results in overcharge of the cathode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号