首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three hundred (experiment I) and 350 (experiment II) weanling, 3-week-old male Sprague-Dawley rats weighing between 40–50 g were randomly assigned two per cage and 50 per dietary treatment to study the effect of dietary fatty acid balance on myocardial lesions. The following oils were tested: Experiment I.Brassica napus var. Tower rapeseed oil [Tower RSO, 1974 cultivar and 1975 cultivar, each containing 0.3% erucic (22∶1) acid];B. napus var. Zephyr RSO containing 0.9% 22∶1; corn oil; olive oil; and soybean oil. Experiment II.B. napus var. Tower RSO (1974 cultivar), olive oil, soybean oil, and the following oils to which was added the indicated level of free 22∶1; Tower +0.5% 22∶1; Tower +5.6% 22∶1; olive oil +4.4% 22∶1; soybean oil +5.7% 22∶1. In each case the oils were incorporated in a semisynthetic diet at a level of 20% by weight. Heart and heart lipid weights of rats fed the different oils did not differ statistically from each other. Fatty acid analyses of heart lipids revealed that the fatty acid composition of the cardiac lipids reflected that of the diet fed. In experiment I, there was a definite but significantly lower incidence (P<0.01) and severity (P<0.01) of heart lesions in rats fed control oils (corn, olive, soybean) than in rats fed rapeseed oils. Also, in experiment II, a definite but lower incidence and severity of heart lesions occurred in rats fed control oils (soybean, olive) compared to rats fed Tower RSO or this oil with added free 22∶1. Adding 22∶1 to an oil naturally high in 18∶3 (soybean) did not alter the incidence of heart lesions, whereas adding 22∶1 to an oil naturally high in 18∶1 (olive) increased significantly (P<0.01) both the incidence and severity of heart lesions. Thus, it appears that the background incidence of heart lesions that are found in the rat in any case, and which are increased by rapeseed oil feeding, is caused by the imbalanced fatty acid composition of the oil for the growing rat, i.e. high monoenes (18∶1, 20∶1, and 22∶1) and high 18∶3 and is not only due to the presence of excess 18∶3. Contribution No. 706, Animal Research Institute.  相似文献   

2.
Male adult Sprague-Dawley rats were fed diets containing 15% by weight of sunflower oil, coconut oil, rapeseed oil or combinations of these oils for 5 or 60 days. The digestibility of erucic acid (22∶1), lauric acid (12∶0) and linoleic acid (18∶2) was measured and found to be decreased for erucic acid at both time intervals, and for lauric acid after 60 days when coconut oil and rapeseed oil were blended. The cardiac lipodosis was proportional to the content of erucic acid in the diet. At 60 days, the high level of 22∶6 in the cardiac phospholipids of rats fed rapeseed oil was reduced by the addition of sunflower oil but not by coconut oil. Thus, the blending of rapeseed oil with coconut oil apparently is less desirable than that of rapeseed oil and sunflower oil.  相似文献   

3.
N. W. Schoene  A. Ferretti  D. Fiore 《Lipids》1981,16(11):866-869
Menhaden oil (MO), whose polyunsaturated fatty acids consist mainly of (n−3) fatty acids, was fed to spontaneously hypertensive rats to determine the effect of (n−3) fatty acid on the in vitro production of prostaglandins produced from arachidonic acid (20∶4[n−6]). Capacity to form PGE2 and PGF was impaired in homogenates of kidney medullae and cortices from rats fed the MO diet compared to rats fed the control diet. The lower amounts of diene prostaglandins produced corresponded to the decrease in the amount of 20∶4 (n−6) in the tissue. Possibly changes produced in tissue lipids by dietary fatty acids affect prostaglandin production by reducing the availability of substrate in tissue lipids.  相似文献   

4.
The metabolism of [14-14C] erucic acid was studied in perfused livers from rats fed on diets containing partially hydrogenated marine oil or rapeseed oil for three days or three weeks. Control rats were given groundnut oil. Chain-shortening of erucic acid, mainly to 18∶1, was found in all dietary groups. In the marine oil and rapeseed oil groups, the percentage of chain-shortened fatty acids in very low density lipoproteins-triacylglycerols (VLDL-TG) exported from the liver increased after prolonged feeding. A similar increase was found in liver TG only with partially hydrogenated marine oil. This oil, rich intrans fatty acids, thus seemed to be more effective in promoting chain-shortening. The fatty acid composition of the secreted and stored TG differed both with respect to total fatty acids and radioactively labeled fatty acids, indicating that at least 2 different pools of TG exist in the liver. The lack of lipidosis in livers from rats fed dietary oils rich in 22∶1 fatty acids is discussed in relation to these findings. In conclusion, a discussion is presented expressing the view that the reversal of the acute lipidosis in the hearts of rats fed rapeseed oil or partially hydrogenated marine oils is, to a large extent, derived from the increased chain-shortening capacity of erucic acid in liver.  相似文献   

5.
This study was undertaken to determine whether the neonate was more susceptible to the effects of dietary erucic acid (22∶1n−9) than the adult. Newborn piglets were used to assess the safety of different levels of 22∶1n−9 on lipid and histological changes in the heart. Newborn piglets showed no myocardial lipidosis as assessed by oil red 0 staining, but lipidosis appeared with consumption of sow milk and disappeared by seven days of age. Milk replacer diets containing soybean oil, or rapeseed oil mixtures with up to 5% 22∶1n−9 in the oil, or 1.25% in the diet, gave trace myocardial lipidosis. Rapeseed oil mixtures with 7 to 42.9% 22∶1n−9 showed definite myocardial lipidosis in newborn piglets, which correlated to dietary 22∶1n−9, showing a maximum after one week on diet. The severity of the lipidosis was greater than observed previously with weaned pigs. There were no significant differences among diets in cardiac lipid classes except for triacylglycerol (TAG), which increased in piglets fed a repeseed oil with 42.9% 22∶1n−9. TAG showed the highest incorporation of 22∶1n−9, the concentration of 22∶1n−9 in TAG was similar to that present in the dietary oil. Among the cardiac phospholipids, sphingomyelin and phosphatidylserine had the highest, and diphosphatidylglycerol (DPG) the lowest level of 22∶1n−9. The low content of 22∶1n−9 in DPG of newborn piglets is not observed in weaned pigs and rats fed high erucic acid rapeseed oil. The relative concentration of saturated fatty acids was lowered in all cardiac phospholipids of piglets fed rapeseed oils, possibly due to the low content of saturated fatty acids in rapeseed oils. The results suggest that piglets fed up to 750 mg 22∶1n−9/kg body weight/day showed no adverse nutritional or cardiac effects.  相似文献   

6.
Three groups of weanling male rats were fed on a fat-free diet for 13 weeks. One group received only the fat-free diet (FF rats), the other 2 groups received the fat-free diet and a daily supplement of 2 energy% ethyl linoleate ([n−6] rats), or 2 energy% ethyl linolenate ([n−3] rats). Urinary excretion of prostaglandin E2 (PGE2), immunoreactive arginine vasopressin (iA VP), and kallikrein were determined. PGE2 was quantitated with a radioimmunoassay having 4.9% cross-reactivity with prostaglandin E3 (PGE3). After 4 weeks on the diet, water consumption and urinary iAVP excretion increased significantly in the FF rats and the (n−3) rats compared with the (n−6) rats. Urinary PGE2 excretion was the same for all 3 groups during the first 10 weeks; thereafter it decreased in FF rats and (n−3) rats compared with the (n−6) rats. There was no difference in urinary PGE2 excretion between the FF rats and the (n−3) rats, even though large differences were found in the percentage of arachidonic acid (20∶4[n−6]), icosapentaenoic acid (20∶5[n−3]), and icosatrienoic acid (20∶3[n−9]) of total kidney fatty acids as well as of kidney phosphatidylinositol fatty acids. Fractionation of urine extracts on high performance liquid chromatography with radioimmunoassay detection indicated that (n−3) rats excreted very little PGE3, if any. Urine output followed the same pattern, as did urinary PGE2 excretion. Urinary kallikrein was estimated at week 12 only. It was found to be significantly lower in FF rats and (n−3) rats. Increased water consumption and increased urinary iAVP excretion seem to be early symptoms (after 4 weeks) of EFA deficiency, whereas decreased urine output and decreased urinary PGE2 excretion occur much later (after 10 weeks). Two energy% linolenate supplementation to a fat-free diet did not change the appearance of any of the measured EFA-deficiency symptoms except for a slightly improved growth rate. There was no evidence of a significant urinary PGE3 excretion in spite of an extreme enrichment of kidney lipids with 20∶5(n−3). It is suggested that urinary PGE2 is derived from precursors delivered from an arachidonic acid pool, which is rather resistant to restriction in dietary linoleate. Presented in part at the 23rd International Conference on Biochemistry of Lipids, Nyborg, Denmark, August 1981, and at the Vth International Conference on Prostaglandins, Florence, Italy, May 1982.  相似文献   

7.
Ishihara K  Komatsu W  Saito H  Shinohara K 《Lipids》2002,37(5):481-486
The effects of dietary stearidonic acid (18∶4n−3) on inflammatory mediator release in whole blood and splenocytes was investigated in Balb/c mice, and the effects were compared with those of two other n−3 PUFA: α-linolenic acid (18∶3n−3) and EPA (20∶5n−3). TAG mixtures containing 10% of 18∶4n−3, 18∶3n−3, or 20∶5n−3 as the respective sole n−3 PUFA were enzymatically synthesized. Diets containing synthesized TAG mixtures were fed to Balb/c mice for 3 wk. The release of prostaglandin E2 (PGE2) and tumor necrosis factor (TNF) were measured in whole blood and splenocytes stimulated with lipopolysaccharide. In whole blood, the production of INF was suppressed by all dietary n−3 PUFA (18∶3n−3, 18∶4n−3, and 20∶5n−3) as compared with the control diet, which contained TAG prepared from safflower oil. PGE2 production was not significantly changed. Differences among the n−3 PUFA (18∶3n−3), 18∶4n−3, and 20∶5n−3) were not observed. In splenocytes, PGE2 production was suppressed by dietary n−3 PUFA, but TNF production was not. GC analysis of plasma and splenocyte FA profiles showed an increase in the levels of 20∶4n−3, 20∶5n−3, and 22∶6n−3 in mice fed the diet containing 18∶4n−3.  相似文献   

8.
Male Sprague-Dawley rats were fed for one week diets containing 20% by weight fat/oil mixtures with different levels of erucic acid (22∶1n−9) (∼2.5 or 9%) and total saturated fatty acids (∼8 or 35%). Corn oil and high erucic acid rapeseed (HEAR) oil were fed as controls. The same hearts were evaluated histologically using oil red O staining and chemically for cardiac triacylglycerol (TAG) and 22∶1n−9 content in cardiac TAG to compare the three methods for assessing lipid accumulation in rat hearts. Rats fed corn oil showed trace myocardial lipidosis by staining, and a cardiac TAG content of 3.6 mg/g wet weight in the absence of dietary 22∶1n−9. An increase in dietary 22∶1n−9 resulted in significantly increased myocardial lipidosis as assessed histologically and by an accumulation of 22∶1n−9 in heart lipids; there was no increase in cardiac TAG except when HEAR oil was fed. An increase in saturated fatty acids showed no changes in myocardial lipid content assessed histologically, the content of cardiac TAG or the 22∶1n−9 content of TAG at either 2.5 or 9% dietary 22∶1n−9. The histological staining method was more significantly correlated to 22∶1n−9 in cardiac TAG (r=0.49;P<0.001) than to total cardiac TAG (r=0.40;P<0.05). The 22∶1n−9 content was highest in cardiac TAG and free fatty acids. Among the cardiac phospholipids, the highest incorporation was observed into phosphatidylserine, followed by sphingomyelin. With the addition of saturated fat, the fatty acid composition showed decreased accumulation of 22∶1n−9 and increased levels of arachidonic and docosahexaenoic acids in most cardiac phospholipids, despite decreased dietary concentrations of their precursor fatty acids, linoleic and linolenic acids.  相似文献   

9.
Atlantic salmon post-smolts were fed diets rich in linoleic acid (sunflower oil, SO), α-linolenic acid (linseed oil, LO) or long-chain polyunsaturated fatty acids (fish oil, FO) for a period of 12 wk. In the liver phospholipids of fish fed SO, the levels of 18∶2n−6, 20∶2n−6, 20∶3n−6 and 20∶4n−6 were significantly elevated compared to both other treatment. In choline phospholipids (CPL), ethanolamine phospholipids (EPL) and phosphatidylserine (PS) the levels of 22∶4n−6 and 22∶5n−6 were significantly elevated in fish fed SO. In liver phospholipids from fish fed LO, 18∶2n−6, 20∶2n−6 and 20∶3n−6 were significantly elevated but 20∶4n−6, 22∶4n−6 and 22∶5n−6 were similar or significantly decreased compared to fish fed FO. Liver phospholipids from fish fed LO had increased 18∶3n−3 and 20∶4n−3 compared to both other treatments while EPL and phosphatidylinositol (PI) also had increased 20∶5n−3. In fish fed LO, 22∶6n−3 was significantly reduced in CPL, PS and PI compared to fish fed FO. Broadly similar changes occurred in gill phospholipids. Production of 12-lipoxygenase metabolites in isolated gill cells stimulated with the Ca2+-ionophore A23187 were significantly reduced in fish fed either SO or LO compared to those fed FO. However, the ratio 12-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE)/12-hydroxy-5,8,10,14,17-eicosapentaenoic acid (12-HEPE) was significantly elevated in stimulated gill cells from SO-fed fish. Although mean values of thromboxane B2 (TXB2) and prostaglandin E2 (PGE2) were increased in fish fed SO, they were not significantly different from those of the other two treatments.  相似文献   

10.
Yong Li  Bruce A. Watkins 《Lipids》1998,33(4):417-425
This study evaluated the effects of conjugated linoleic acids (CLA) on tissue fatty acid composition and ex vivo prostaglandin E2 (PGE2) production in rats given diets varying in n-6 and n-3 fatty acids. Four groups of rats were given a basal semipurified diet (AIN-93G) containing 70 g/kg of added fat for 42 d. The fat treatments were formulated to contain CLA (0 vs. 10 g/kg of diet) and n-6 (soybean oil having an n-6/n-3 ratio of 7.3) and n-3 fatty acids (menhaden oil+safflower oil having an n-6/n-3 ratio of 1.8) in different ratios in a 2×2 factorial design. Fatty acids in liver, serum, muscle, heart, brain, spleen, and bone (cortical, marrow, and periosteum) were analyzed by capillary gas-liquid chromatography. The various dietary lipid treatments did not affect growth; however, CLA improved feed efficiency. The CLA isomers were found in all rat tissues analyzed although their concentrations varied. Dietary CLA decreased the concentrations of 16∶1n−7, 18∶1, total monounsaturates and n−6 fatty acids, but increased the concentrations of n−3 fatty acids (22∶5n−3 and 22∶6n−3), and saturates in the tissues analyzed. Ex vivo PGE2 production in bone organ culture was decreased by n−3 fatty acids and CLA. We speculate that CLA reduced the concentration of 18∶1 fatty acids by inhibiting liver Δ9-desaturase activity. The fact that CLA lowered ex vivo PGE2 production in bone organ culture suggests that these conjugated fatty acids have the potential to influence bone formation and resorption.  相似文献   

11.
Male Wistar rats were fed rapeseed oil containing high or low levels or erucic acid for 20 weeks, and changes in the fatty acid composition of cardiac mitochondrial phospholipids were studied. Treatment with rapeseed oil containing 46.2% erucic acid showed incorporation of 22∶1 (5.6%) into isolated cardiolipin from heart mitochondria. After high or low (3.7%) erucic rapeseed oil feeding, linoleic acid was slightly incorporated into cardiolipin. Moreover, both of these rapeseed oils induced a significant increase of linoleate-arachidonate ratio in phosphatidylethanolamine and phosphatidylcholine. This ratio was also significantly increased in fatty acids esterified to the β-position of these phospholipids. On the basis of such results, we have to consider the role of linolenic acid which is present at a high level in the different rapeseed oils used, as a possible inhibitor of heart microsomal enzymes involved in linoleate arachidonate conversion. Such alterations might account for mitochondrial fragility and myocardial lesions obtained in long term rapeseed oil feeding experiments. ERA-CNRS no 070497  相似文献   

12.
Tocher DR  Bell JG  Dick JR  Crampton VO 《Lipids》2003,38(7):723-732
Fatty acyl desaturase activities, involved in the conversion of the C18 EFA 18∶2n−6 and 18∶3n−3 to the highly unsaturated fatty acids (HUFA) 20∶4n−6, 20∶5n−3, and 22∶6n−3, are known to be under nutritional regulation. Specifically, the activity of the desaturation/elongation pathway is depressed when animals, including fish, are fed fish oils rich in n−3 HUFA compared to animals fed, vegetable oils rich in C18 FFA. The primary aims of the present study were (i) to establish the relative importance of product inhibition (n−3 HUFA) vs. increased substrate concentration (C18 EFA) and (ii) to determine whether 18∶2n−6 and 18∶3n−3 differ in their effects on the hepatic fatty acyl desaturation/elongation pathway in Atlantic salmon (Salmo salar). Smolts were fed 10 experimental diets containing blends of two vegetable oils, linseed (IO), and rapeseed oil (RO), and fish oil (FO) in a triangular mixture design for 50 wk. Fish were sampled after 32 and 50 wk, lipid and FA composition of liver determined, fatty acyl desaturation/elongation activity estimated in hepatocytes using [1-14C]18∶3n−3 as substrate, and the data subjected to regression analyses. Dietary 18∶2n−6 was positively correlated, and n−3 HUFA negatively correlated, with lipid content of liver. Dietary 20∶5n−3 and 22∶6n−3 were positively correlated with liver FA with a slope greater than unity suggesting relative retention and deposition of these HUFA. In contrast, dietary 18∶2n−6 and 18∶3n−3 were positively correlated with liver FA with a slope of less than unity suggesting metabolism via β-oxidation and/or desaturation/elongation. Consistent with this, fatty acyl desaturation/elongation in hepatocytes was significantly increased by feeding diets containing vegetable oils. Dietary 20∶5n−3 and 22∶6n−3 levels were negatively correlated with hepatocyte fatty acyl desaturation. At 32 wk, 18∶2n−6 but not 18∶3n−3 was positively correlated with hepatocyte fatty acyl desaturation, wheres the reverse was true at 50 wk. The data indicate that both feedback inhibition through increased n−3 HUFA and decreased C18 fatty acyl substrate concentration are probably important in determining the level of hepatocyte fatty acyl desaturation and that 18∶2n−6 and 18∶3n−3 may differ in their effects on this pathway.  相似文献   

13.
Partially hydrogenated marine oils containing 18∶1-, 20∶1- and 22∶1-isomers and partially hydrogenated peanut oil containing 18∶1-isomers were fed as 24–28 wt % of the diet with or without supplement of linoleic acid. Reference groups were fed peanut, soybean, or rapeseed oils with low or high erucic acid content. Dietary monoene isomers reduced the conversion of linoleic acid into arachidonic acid and the deposition of the latter in liver and heart phosphatidylcholine. This effect was more pronounced for the partially hydrogenated marine oils than for the partially hydrogenated peanut oil. The content oftrans fatty acids in liver phospholipids was similar in groups fed partially hydrogenated fats. The distribution of various phospholipids in heart and liver was unaffected by the dietary fat. The decrease in deposition of arachidonic acid in rats fed partially hydrogenated marine oils was shown in vitro to be a consequence of lower Δ6-desaturase activity rather than an increase in the peroxisomal β-oxidation of arachidonic acid. The lower amounts of arachidonic acid deposited may be a result of competition in the Δ6-desaturation not only from the C22-and C20-monoenoic fatty acids originally present in the partially hydrogenated marine oil, but also from C18- and C16-monoenes produced by peroxisomal β-oxidation of the long-chain fatty acids. Part of this work was presented at the ISF-AOCS Congress, New York City, 1980.  相似文献   

14.
Green TJ  Innis SM 《Lipids》2000,35(6):607-612
Canola oil is not approved for use in infant formula largely because of concerns over possible accumulation of triglyceride in heart as a result of the small amounts of erucic acid (22∶1n−9) in the oil. Therefore, the concentration and composition of heart triglyceride were determined in piglets fed from birth for 10 (n=4–6) or 18 (n=6) d with formula containing about 50% energy fat as 100% canola oil (0.5% 22∶1n−9) or 100% soybean oil, or 26% canola oil or soy oil (blend) with palm, high-oleic sunflower and coconut oil, providing amounts of 16∶0 and 18∶1 closer to milk, or a mix of soy, high-oleic sunflower and flaxseed oils with C16 and C18 fatty acids similar to canola oil but without 22∶1. Biochemical analysis found no differences in heart triglyceride concentrations among the groups at 10 or 18 d. Assessment of heart triglycerides using Oil Red O staining in select treatments confirmed no differences between 10-d-old piglets fed formula with 100% canola oil (n=4), 100% soy oil (n=4), or the soy oil blend (n=2). Levels of 22∶1n−9 in heart triglyceride and phospholipid, however, were higher (P<0.01) in piglets fed 100% canola oil or the canola oil blend, with higher levels found in triglycerides compared with phospholipids. The modest accumulation of 22∶1n−9 associated with feeding canola oil was not associated with biochemical evidence of heart triglyceride accumulation at 10 and 18 d.  相似文献   

15.
Porsgaard T  Straarup EM  Høy CE 《Lipids》1999,34(2):103-107
In this study we determined in rats the complete 24-h lymphatic fatty acid profile after administration of either rapeseed oil (RO) or rapeseed oil interesterified with 10∶0 (RO/C10) with special emphasis on the transition from absorptive to postabsorptive phase. Rats were subjected to cannulation of the main mesenteric lymph duct and the next day oils were administered through a gastric feeding tube. Lymph was collected in 1-h fractions for the following 24 h. The time for maximum lymphatic transport of fatty acids was at 4 h with fast changes in fatty acid composition from the fatty acids of endogenous origin to those of the administered oils. Seven to eight hours after administration the transport was significantly lower than maximum, indicating the change from absorptive to postabsorptive phase. At 24 h after administration of either oil the transport of total fatty acids, palmitic acid (16∶0), and linoleic acid (18∶2n−6) together with oleic acid (18∶1n−9) after RO had not returned to the transport at baseline. In contrast, the transport of decanoic acid (10∶0) and α-linolenic acid (18∶3n−3) returned to baseline values between 12 and 15 h. This indicated that the absorption of purely exogenous fatty acids (illustrated by 10∶0 and 18∶3n−3) was complete at 15 h and that the fatty acids transported between 15 and 24 h were derived mostly from endogenous stores.  相似文献   

16.
C. -E. Høy  G. Hølmer 《Lipids》1988,23(10):973-980
The influence of the linoleic acid levels of diets containing partially hydrogenated marine, oils (HMO) rich in isomeric 16∶1, 18∶1, 20∶1 and 22∶1 fatty acids on the fatty acid profiles of lipids from rat liver, heart and adipose tissue was examined. Five groups of rats were fed diets containing 20 wt% fat−16% HMO+4% vegetable oils. In these diets, the linoleic acid contents varied between 1.9% and 14.5% of the dietary fatty acids, whereas the contents oftrans fatty acids were 33% in all groups. A sixth group was fed a partially hydrogenated soybean oil (HSOY) diet containing 8% linoleic acid plus 32%trans fatty acids, mainly 18∶1, and a seventh group, 20% palm oil (PALM), with 10% linoleic acid and notrans fatty acids. As the level of linoleic acid in the HMO diets increased from 1.9% to 8.2%, the contents of (n−6) polyunsaturated fatty acids (PUFA) in the phospholipids increased correspondingly. At this dietary level of linoleic acid, a plateau in (n−6) PUFA was reached that was not affected by further increase in dietary 18∶2(n−6) up to 14.5%. Compared with the HSOY- or PALM-fed rats, the plateau value of 20∶4(n−6) were considerably lower and the contents of 18∶2(n−6) higher in liver phosphatidylcholines (PC) and heart PC. Heart phosphatidylethanolamines (PE) on the contrary, had elevated contents of 20∶4(n−6), but decreased 22∶5(n−6) compared with the PALM group. All groups fed HMO had similar contents oftrans fatty acids, mainly 16∶1 and 18∶1, in their phospholipids, irrespective of the dietary 18∶2 levels, and these contents were lower than in the HSOY group. High levels of linoleic acid consistently found in triglycerides of liver, heart and adipose tissue of rats fed HMO indicated that feeding HMO resulted in a reduction of the conversion of linoleic acid into long chain PUFA that could not be overcome by increasing the dietary level of linoleic acid.  相似文献   

17.
S. Q. Alam  B. M. Bergens  B. S. Alam 《Lipids》1991,26(11):895-900
The effect of dietary n−3 fatty acids on prostaglandin E2 (PGE2) and leukotriene C4 (LTC4) levels in rat salivary glands and gingiva was examined in two separate nutritional studies. In the first set of experiments, two groups of male weanling Sprague-Dawley rats were fed semipurified diets containing 10% corn oil (control group) or 10% menhaden oil (experimental group). Rats were killed after 8 wk on the diets; the fatty acid composition of total phospholipids and the concentrations of PGE2 and its precursor, arachidonic acid, were measured in gingiva and submandibular salivary glands (SMSG). Dietary n−3 fatty acids were incorporated into the tissue phospholipids. Arachidonic acid levels were reduced by 56% in gingiva and SMSG of rats fed menhaden oil compared with the control rats fed the diet containing corn oil. The concentrations of PGE2 in SMSG and gingiva of rats fed the diet containing menhaden oil were reduced by 74% and 83%, respectively. In a subsequent nutritional study, we tested whether the diet-induced reduction in tissue arachidonic acid levels would also result in a corresponding decrease in LTC4 production. Three groups of rats were fed diets containing 5% corn oil (group 1), 4% ethyl ester concentrate of n−3 fatty acids plus 1% corn oil (group 2), or 5% ethyl ester concentrate of n−3 fatty acids (group 3). After 6 wk of feeding, gingiva and SMSG were analyzed for arachidonic acid content andin vitro production of LTC4. Arachidonic acid content of total phospholipids was about 60% lower in gingiva and 69% lower in SMSG of rats fed the ethyl ester concentrate of n−3 fatty acids (groups 2 and 3) than those of the control group fed the corn oil diet (group 1). Upon incubation with calcium ionophore, gingiva and SMSG from rats fed the n−3 fatty acids rich diet produced significantly less TLC4 than those from rats of the control group. Because PGE2 and LTC4 are believed to be important biochemical mediators of periodontal disease, one may speculate that a diet-induced reduction in their levels may have a beneficial effect upon the course of the disease. The function of salivary glands may also be altered because of the role of these eicosanoids in salivary secretions. Presented in part for the Hatton Award Competition at the American Association for Dental Research Meeting, San Francisco, California, March 15–19, 1989, and at the International Association for Dental Research Meeting, Acapulco, Mexico, April 17–21, 1991.  相似文献   

18.
We have reported that dietary fish oil (FO) leads to the incorporation of long-chain n−3 PUFA into the gut tissue of small animal models, affecting contractility, particularly of rat ileum. This study examined the FO dose response for the incorporation of n−3 PUFA into ileal tissue and how this correlated with in vitro contractility. Groups of ten to twelve 13-wk-old Wistar-Kyoto rats were fed 0, 1, 2.5, and 5% FO-supplemented diets balanced with sunflower seed oil for 4 wk, after which ileal total phospholipid FA were determined and in vitro contractility assessed. For the total phospholipid fraction, increasing the dietary FO levels led to a significant increase first evident at 1% FO, with a stepwise, nonsaturating six-fold increase in n−3 PUFA as EPA (20∶5n−3), DPA (docosapentaenoic acid, 22∶5n−3), and DHA, but mainly as DHA (22∶6n−3), replacing the n−6 PUFA linoleic acid (18∶2n−6) and arachidonic acid (20∶4n−6) over the dosage range. There was no difference in KCl-induced depolarization-driven contractility. However, a significant increase in receptor-dependent maximal contractility occurred at 1% FO for carbachol and at 2.5% FO for prostaglandin E2, with a concomitant increase in sensitivity for prostaglandin E2 at 2.5 and 5% FO. These results demonstrate that significant increases in ileal membrane n−3 PUFA occurred at relatively low doses of dietary FO, with differential receptor-dependent increases in contractility observed for muscarinic and prostanoid agonists.  相似文献   

19.
Male Sprague-Dawley rats, 3 weeks of age, were fed semisynthetic diets containing test oils at 20% by weight for 3 days, 1 week, and 16 weeks. The test oils contained up to 22.3% erucic acid. Growth retardation was evident in rats fed rapeseed oil high in erucic acid, and soybean oil and Tower rapeseed oil diets containing about 5% erucic acid. Cardiac triglyceride accumulation was found in rats fed diets containing about 5% erucic acid but not in rats fed Tower rapeseed oil which contains 0.2% of this acid. The cardiac free fatty acid levels were low, 50–100 μg/g of wet heart tissue, and were not affected by feeding diets containing about 5% erucic acid. Feeding a diet containing a high erucic acid rapeseed oil did result in higher free fatty acid levels but only at 3 days and 1 week; the level at 16 weeks was similar to the other oils. The fatty acid analysis of cardiac triglycerides and free fatty acids showed high percentages of erucic acid at 3 days and 1 week; at 16 weeks these levels had declined significantly. The results indicate that the accumulated erucic and eicosenoic acids, at 3 days and 1 week, accounted for the increase in cardiac free fatty acids when rats were fed the high erucic acid rapeseed oil. There appears to be no evidence that the early cardiac triglyceride or free fatty acid accumulation is related to the formation of the long term myocardial lesions. Contribution No. 739 Animal Research Institute.  相似文献   

20.
No mortality was observed in 6 week old male Sprague-Dawley rats subjected to cold at 4 C for 3 weeks and fed either a control diet (Chow) or a semisynthetic diet containing 20% by wt rapeseed oil high in erucic acid (23.6%). All rats fed the Chow diet and 17 of 20 rats fed the rapeseed oil-containing diet survived 4 weeks in the same environment. Three rats on the latter diet died of self-mutilation. Marked myocardial lipidosis as well as a large accumulation of 20∶1 and 22∶1 was observed in the hearts of rats fed the rapeseed oil-containing diet. Five of 20 rats on the Chow diet and 2 of 20 rats on the rapeseed oil-containing diet had focal necrotic areas in the myocardium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号