首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
2.
The results of comparative sequence analysis, mainly of small subunit (SSU) ribosomal (r)RNA sequences, have suggested that all of cellular life can be placed in one of three domains: the Archaea, Bacteria or Eucarya. There is some evidence that the Archaea may not be a monophyletic assemblage, but as yet this issue has not been resolved. Most of the lineages, and all of the deepest ones, in the tree based upon SSU rRNA sequences, are microbial. Traditional ideas of classification such as Whittaker's five kingdom scheme do not adequately describe life's diversity as revealed by sequence comparisons. There are many microbial groups that demonstrate much greater amounts of SSU rRNA sequence divergence than do members of the classical kingdoms, Animalia, Plantae and Fungi. The old microbial kingdoms Monera and Protista are clearly paraphyletic but as yet there is no consensus as to how they should be reorganized in taxonomic terms. New data from environmental analysis suggests that much of the microbial world is unknown. Every environment which has been analysed by molecular methods has revealed many previously unrecorded lineages. Some of these show great divergence from the sequences of cultured microorganisms suggesting that fundamentally new microbial groups remain to be isolated. The relationships of some of these new lineages may be expected to affect how the tree of life is organized into higher taxa, and to also influence which features will be recognized as synapomorphies. There is currently no objective measure whereby microbial diversity can be quantified and compared to the figures which are widely quoted for arthropods and other Metazoa.  相似文献   

3.
We document the phylogenetic behavior of the 18S rRNA molecule in 67 taxa from 28 metazoan phyla and assess the effects of among-site rate variation on reconstructing phylogenies of the animal kingdom. This empirical assessment was undertaken to clarify further the limits of resolution of the 18S rRNA gene as a phylogenetic marker and to address the question of whether 18S rRNA phylogenies can be used as a source of evidence to infer the reality of a Cambrian explosion. A notable degree of among-site rate variation exists between different regions of the 18S rRNA molecule, as well as within all classes of secondary structure. There is a significant negative correlation between inferred number of nucleotide substitutions and phylogenetic information, as well as with the degree of substitutional saturation within the molecule. Base compositional differences both within and between taxa exist and, in certain lineages, may be associated with long branches and phylogenetic position. Importantly, excluding sites with different degrees of nucleotide substitution significantly influences the topology and degree of resolution of maximum-parsimony phylogenies as well as neighbor-joining phylogenies (corrected and uncorrected for among-site rate variation) reconstructed at the metazoan scale. Together, these data indicate that the 18S rRNA molecule is an unsuitable candidate for reconstructing the evolutionary history of all metazoan phyla, and that the polytomies, i.e., unresolved nodes within 18S rRNA phylogenies, cannot be used as a single or reliable source of evidence to support the hypothesis of a Cambrian explosion.  相似文献   

4.
Annexin homologues in the kingdoms of Planta and Protista were characterized by molecular sequence analysis to determine their phylogenetic and structural relationship with annexins of Animalia. Sequence fragments from 19 plant annexins were identified in sequence databases and composite sequences were also assembled from expressed sequence tags for Arabidopsis thaliana. Length differences in protein aminotermini and evidence for unique exon splice sites indicated that plant annexins were distinct from those of animals. A third annexin gene of Giardia lamblia (Anx21-Gla) was identified as a distant relative to other protist annexins and to those of higher eukaryotes, thus providing a suitable outgroup for evolutionary reconstruction of the family tree. Rooted evolutionary trees portrayed protist, plant, and Dictyostelium annexins as early, monophyletic ramifications prior to the appearance of closely related animal annexin XIII. Molecular phylogenetic analyses of DNA and protein sequence alignments revealed at least seven separate plant subfamilies, represented by Anx18 (alfalfa, previously classified), Anx22 (thale cress), Anx23 (thale cress, cotton, rape and cabbage), Anx24 (bell pepper and tomato p34), Anx25 (strawberry, horseradish, pea, soybean, and castor bean), Anx26-Zma, and Anx27-Zma (maize). Other unique subfamilies may exist for rice, tomato p35, apple, and celery annexins. Consensus sequences compiled for each eukaryotic kingdom showed some breakdown of the "annexin-fold" motif in repeats 2 and 3 of protist and plant annexins and a conserved codon deletion in repeat 3 of plants. The characterization of distinct annexin genes in plants and protists reflects their comparable diversity among animal species and offers alternative models for the comparative study of structure-function relationships within this important gene family.  相似文献   

5.
Origin and evolution of the slime molds (Mycetozoa)   总被引:1,自引:0,他引:1  
The Mycetozoa include the cellular (dictyostelid), acellular (myxogastrid), and protostelid slime molds. However, available molecular data are in disagreement on both the monophyly and phylogenetic position of the group. Ribosomal RNA trees show the myxogastrid and dictyostelid slime molds as unrelated early branching lineages, but actin and beta-tubulin trees place them together as a single coherent (monophyletic) group, closely related to the animal-fungal clade. We have sequenced the elongation factor-1alpha genes from one member of each division of the Mycetozoa, including Dictyostelium discoideum, for which cDNA sequences were previously available. Phylogenetic analyses of these sequences strongly support a monophyletic Mycetozoa, with the myxogastrid and dictyostelid slime molds most closely related to each other. All phylogenetic methods used also place this coherent Mycetozoan assemblage as emerging among the multicellular eukaryotes, tentatively supported as more closely related to animals + fungi than are green plants. With our data there are now three proteins that consistently support a monophyletic Mycetozoa and at least four that place these taxa within the "crown" of the eukaryote tree. We suggest that ribosomal RNA data should be more closely examined with regard to these questions, and we emphasize the importance of developing multiple sequence data sets.  相似文献   

6.
rpoB sequence analysis as a novel basis for bacterial identification   总被引:1,自引:0,他引:1  
Comparison of the sequences of conserved genes, most commonly those encoding 16S rRNA, is used for bacterial genotypic identification. Among some taxa, such as the Enterobacteriaceae, variation within this gene does not allow confident species identification. We investigated the usefulness of RNA polymerase beta-subunit encoding gene (rpoB) sequences as an alternative tool for universal bacterial genotypic identification. We generated a database of partial rpoB for 14 Enterobacteriaceae species and then assessed the intra- and interspecies divergence between the rpoB and the 16S rRNA genes by pairwise comparisons. We found that levels of divergence between the rpoB sequences of different strains were markedly higher than those between their 16S rRNA genes. This higher discriminatory power was further confirmed by assigning 20 blindly selected clinical isolates to the correct enteric species on the basis of rpoB sequence comparison. Comparison of rpoB sequences from Enterobacteriaceae was also used as the basis for their phylogenetic analysis and demonstrated the genus Klebsiella to be polyphyletic. The trees obtained with rpoB were more compatible with the currently accepted classification of Enterobacteriaceae than those obtained with 16S rRNA. These data indicate that rpoB is a powerful identification tool, which may be useful for universal bacterial identification.  相似文献   

7.
The evolution of the RecA protein was analyzed using molecular phylogenetic techniques. Phylogenetic trees of all currently available complete RecA proteins were inferred using multiple maximum parsimony and distance matrix methods. Comparison and analysis of the trees reveal that the inferred relationships among these proteins are highly robust. The RecA trees show consistent subdivisions corresponding to many of the major bacterial groups found in trees of other molecules including the alpha, beta, gamma, delta, epsilon proteobacteria, cyanobacteria, high-GC gram-positives, and the Deinococcus-Thermus group. However, there are interesting differences between the RecA trees and these other trees. For example, in all the RecA trees the proteins from gram-positive species are not monophyletic. In addition, the RecAs of the cyanobacteria consistently group with those of the high-GC gram-positives. To evaluate possible causes and implications of these and other differences phylogenetic trees were generated for small-subunit rRNA sequences from the same (or closely related) species as represented in the RecA analysis. The trees of the two molecules using these equivalent species-sets are highly congruent and have similar resolving power for close, medium, and deep branches in the history of bacteria. The implications of the particular similarities and differences between the trees are discussed. Some of the features that make RecA useful for molecular systematics and for studies of protein evolution are also discussed.  相似文献   

8.
Nucleotide sequences from strains of the four species currently in the genus Chlamydia, C. pecorum, C. pneumoniae, C. psittaci, and C. trachomatis were investigated. In vitro-amplified RNA genes of the ribosomal small subunit from 30 strains of C. pneumoniae and C. pecorum were subjected to solid-phase DNA sequencing of both strands. The human isolates of C. pneumoniae differed in only one position in the 16S rRNA gene, indicating genetic homogeneity among these strains. Interestingly, horse isolate N16 of C. pneumoniae was found to be closely related to the human isolates of this species, with a 98.9% nucleotide similarity between their 16S rRNA sequences. The type strain and koala isolates of C. pecorum were also found to be very similar to each other, possessing two different 16S rRNA sequences with only one-nucleotide difference. Furthermore, the C. pecorum strains truncated the 16S rRNA molecule by one nucleotide compared to the molecules of the other chlamydial species. This truncation was found to result in loss of a unilaterally bulged nucleotide, an attribute present in all other eubacteria. The phylogenetic structure of the genus Chlamydia was determined by analysis of 16S rRNA sequences. All phylogenetic trees revealed a distinct line of descent of the family Chlamydiaceae built of two main clusters which we denote the C. pneumoniae cluster and the C. psittaci cluster. The clusters were verified by bootstrap analysis of the trees and signature nucleotide analysis. The former cluster contained the human isolates of C. pneumoniae and equine strain N16. The latter cluster consisted of C. psittaci, C. pecorum, and C. trachomatis. The members of the C. pneumoniae cluster showed tight clustering and strain N16 is likely to be a subspecies of C. pneumoniae since these strains also share some antigenic cross-reactivity and clustering of major outer membrane protein gene sequences. C. psittaci and strain N16 branched early out of the respective cluster, and interestingly, their inclusion bodies do not stain with iodine. Furthermore, they also share less reliable features like normal elementary body morphology and plasmid content. Therefore, the branching order presented here is very likely a true reflection of evolution, with strain N16 of the species C. pneumoniae and C. psittaci forming early branches of their respective cluster and with C. trachomatis being the more recently evolved species within the genus Chlamydia.  相似文献   

9.
The DNA sequences of the recA gene from 25 strains of bacteria are known. The evolution of these recA gene sequences, and of the derived RecA protein sequences, is examined, with special reference to the effect of variations in genomic G + C content. From the aligned RecA protein sequences, phylogenetic trees have been drawn using both distance matrix and maximum parsimony methods. There is a broad concordance between these trees and those derived from other data (largely 16S ribosomal RNA sequences). There is a fair degree of certainty in the relationships among the "Purple" or Proteobacteria, but the branching pattern between higher taxa within the eubacteria cannot be reliably resolved with these data.  相似文献   

10.
Foraminifera have one of the best known fossil records among the unicellular eukaryotes. However, the origin and phylogenetic relationships of the extant foraminiferal lineages are poorly understood. To test the current paleontological hypotheses on evolution of foraminifera, we sequenced about 1,000 base pairs from the 3' end of the small subunit rRNA gene (SSU rDNA) in 22 species representing all major taxonomic groups. Phylogenies were derived using neighbor-joining, maximum-parsimony, and maximum-likelihood methods. All analyses confirm the monophyletic origin of foraminifera. Evolutionary relationships within foraminifera inferred from rDNA sequences, however, depend on the method of tree building and on the choice of analyzed sites. In particular, the position of planktonic foraminifera shows important variations. We have shown that these changes result from the extremely high rate of rDNA evolution in this group. By comparing the number of substitutions with the divergence times inferred from the fossil record, we have estimated that the rate of rDNA evolution in planktonic foraminifera is 50 to 100 times faster than in some benthic foraminifera. The use of the maximum-likelihood method and limitation of analyzed sites to the most conserved parts of the SSU rRNA molecule render molecular and paleontological data generally congruent.  相似文献   

11.
Comparative sequence analysis of small subunit rRNA is currently one of the most important methods for the elucidation of bacterial phylogeny as well as bacterial identification. Phylogenetic investigations targeting alternative phylogenetic markers such as large subunit rRNA, elongation factors, and ATPases have shown that 16S rRNA-based trees reflect the history of the corresponding organisms globally. However, in comparison with three to four billion years of evolution the phylogenetic information content of these markers is limited. Consequently, the limited resolution power of the marker molecules allows only a spot check of the evolutionary history of microorganisms. This is often indicated by locally different topologies of trees based on different markers, data sets or the application of different treeing approaches. Sequence peculiarities as well as methods and parameters for data analysis were studied with respect to their effects on the results of phylogenetic investigations. It is shown that only careful data analysis starting with a proper alignment, followed by the analysis of positional variability, rates and character of change, testing various data selections, applying alternative treeing methods and, finally, performing confidence tests, allows reasonable utilization of the limited phylogenetic information.  相似文献   

12.
Complete sequences of cytochrome b (1,137 bases) and 12S ribosomal RNA (961 bases) genes in mitochondrial DNA were successfully determined from the woolly mammoth (Mammuthus primigenius), African elephant (Loxodonta africana), and Asian elephant (Elephas maximus). From these sequence data, phylogenetic relationships among three genera were examined. Molecular phylogenetic trees reconstructed by the neighbor-joining and the maximum parsimony methods provided an identical topology both for cytochrome b and 12S rRNA genes. These results support the "Mammuthus-Loxodonta" clade, which is contrary to some previous morphological reports that Mammuthus is more closely related to Elephas than to Loxodonta.  相似文献   

13.
We previously found that proteinaceous protease inhibitors homologous to Streptomyces subtilisin inhibitor (SSI) are widely produced by various Streptomyces species, and we designated them "SSI-like proteins" (Taguchi S, Kikuchi H, Suzuki M, Kojima S, Terabe M, Miura K, Nakase T, Momose H [1993] Appl Environ Microbiol 59:4338-4341). In this study, SSI-like proteins from five strains of the genus Streptoverticillium were purified and sequenced, and molecular phylogenetic trees were constructed on the basis of the determined amino acid sequences together with those determined previously for Streptomyces species. The phylogenetic trees showed that SSI-like proteins from Streptoverticillium species are phylogenetically included in Streptomyces SSI-like proteins but form a monophyletic group as a distinct lineage within the Streptomyces proteins. This provides an alternative phylogenetic framework to the previous one based on partial small ribosomal RNA sequences, and it may indicate that the phylogenetic affiliation of the genus Streptoverticillium should be revised. The phylogenetic trees also suggested that SSI-like proteins possessing arginine or methionine at the P1 site, the major reactive center site toward target proteases, arose multiple times on independent lineages from ancestral proteins possessing lysine at the P1 site. Most of the codon changes at the P1 site inferred to have occurred during the evolution of SSI-like proteins are consistent with those inferred from the extremely high G + C content of Streptomyces genomes. The inferred minimum number of amino acid replacements at the P1 site was nearly equal to the average number for all the variable sites. It thus appears that positive Darwinian selection, which has been postulated to account for accelerated rates of amino acid replacement at the major reaction center site of mammalian protease inhibitors, may not have dictated the evolution of the bacterial SSI-like proteins.  相似文献   

14.
We have determined complete gene sequences encoding the largest subunit of the RNA polymerase II (RBP1) from two Microsporidia, Vairimorpha necatrix and Nosema locustae. Phylogenetic analyses of these and other RPB1 sequences strongly support the notion that Microsporidia are not early-diverging eukaryotes but instead are specifically related to Fungi. Our reexamination of elongation factors EF-1alpha and EF-2 sequence data that had previously been taken as support for an early (Archezoan) divergence of these amitochondriate protists show such support to be weak and likely caused by artifacts in phylogenetic analyses. These EF data sets are, in fact, not inconsistent with a Microsporidia + Fungi relationship. In addition, we show that none of these proteins strongly support a deep divergence of Parabasalia and Metamonada, the other amitochondriate protist groups currently thought to compose early branches. Thus, the phylogenetic placement among eukaryotes for these protist taxa is in need of further critical examination.  相似文献   

15.
Representatives of the family Methanosarcinaceae were analyzed phylogenetically by comparing partial sequences of their methyl-coenzyme M reductase (mcrI) genes. A 490-bp fragment from the A subunit of the gene was selected, amplified by the PCR, cloned, and sequenced for each of 25 strains belonging to the Methanosarcinaceae. The sequences obtained were aligned with the corresponding portions of five previously published sequences, and all of the sequences were compared to determine phylogenetic distances by Fitch distance matrix methods. We prepared analogous trees based on 16S rRNA sequences; these trees corresponded closely to the mcrI trees, although the mcrI sequences of pairs of organisms had 3.01 +/- 0.541 times more changes than the respective pairs of 16S rRNA sequences, suggesting that the mcrI fragment evolved about three times more rapidly than the 16S rRNA gene. The qualitative similarity of the mcrI and 16S rRNA trees suggests that transfer of genetic information between dissimilar organisms has not significantly affected these sequences, although we found inconsistencies between some mcrI distances that we measured and and previously published DNA reassociation data. It is unlikely that multiple mcrI isogenes were present in the organisms that we examined, because we found no major discrepancies in multiple determinations of mcrI sequences from the same organism. Our primers for the PCR also match analogous sites in the previously published mcrII sequences, but all of the sequences that we obtained from members of the Methanosarcinaceae were more closely related to mcrI sequences than to mcrII sequences, suggesting that members of the Methanosarcinaceae do not have distinct mcrII genes.  相似文献   

16.
In Dictyostelium discoideum, newly assembled ribosomal subunits enter polyribosomes while they still contain immature rRNA. rRNA maturation requires the engagement of the subunits in protein synthesis and leads to stabilization of their structure. Maturation of pre-17 S rRNA occurs only after the newly formed 40 S ribosomal particle has entered an 80 S ribosome and participated at least in the formation of one peptide bond or in one translocation event; maturation of pre-26 S rRNA requires the presence on the 80 S particle of a peptidyl-tRNA containing at least 6 amino acids. Newly assembled particles that cannot fulfill these requirements for structural reasons are disassembled into free immature rRNA and ribosomal proteins.  相似文献   

17.
Sequences of the dnaK gene, coding for the 70-kDa heat shock protein (HSP70), were determined for six members of the order Planctomycetales, including representatives of three genera, and for the only cultivated member of the order Verrucomicrobiales, Verrucomicrobium spinosum. A fragment of the dnaK gene was amplified from these strains by PCR with oligonucleotide primers targeting regions of the dnaK gene that are conserved at the amino acid level, and the resulting PCR products were cloned into a plasmid vector. Sequence analysis of the cloned dnaK fragments revealed the presence of two different types of dnaK sequence in one of the planctomycete strains, Planctomyces maris, and in V. spinosum. Only one type of dnaK sequence was found for each of the remaining strains. Phylogenetic analysis of the partial sequence data suggested that the majority of planctomycete strains, including one of the Planctomyces maris sequences, form a coherent phylogenetic group branching adjacent to other main lines of descent within the domain Bacteria, as has been shown previously by 16S rRNA sequence analysis. One of the two V. spinosum dnaK sequences also appears to constitute a separate lineage within the gram-negative bacteria. Each of the remaining sequences from P. maris and V. spinosum, together with the single sequence obtained from Planctomyces limnophilus, appeared to be unrelated to the other planctomycete sequences and to occupy a position distant from that of other gram-negative bacteria. The phylogenetic diversity of dnaK sequences exhibited by P. maris and V. spinosum was comparable to that found in Synechococcus sp. strain PCC7942 and Escherichia coli, the only other prokaryotes for which a dnaK multigene family has been demonstrated.  相似文献   

18.
Degenerate PCR primers derived from conserved regions of the eubacterial groESL heat shock operon were used to amplify groESL sequences of Ehrlichia equi, Ehrlichia phagocytophila, the agent of human granulocytic ehrlichiosis (HGE), Ehrlichia canis, Bartonella henselae, and Rickettsia rickettsii. The groESL nucleotide sequences were less conserved than the previously determined 16S rRNA gene sequences of these bacteria. A phylogenetic tree derived from deduced GroEL amino acid sequences was similar to trees based on 16S rRNA gene sequences. Nucleotide sequences obtained from clinical samples containing E. equi, E. phagocytophila, or the HGE agent were very similar (99.9 to 99.0% identity), and the deduced amino acid sequences were identical. Some divergence was evident between nucleotide sequences amplified from samples originating from the United States (E. equi and the HGE agent) and sequences from the European species, E. phagocytophila. A single pair of PCR primers derived from these sequences was used to detect E. chaffeensis and HGE agent DNA in blood samples from human patients with ehrlichiosis.  相似文献   

19.
The 18S rRNA gene (Rns) phylogeny of Acanthamoeba is being investigated as a basis for improvements in the nomenclature and taxonomy of the genus. We previously analyzed Rns sequences from 18 isolates from morphological groups 2 and 3 and found that they fell into four distinct evolutionary lineages we called sequence types T1-T4. Here, we analyzed sequences from 53 isolates representing 16 species and including 35 new strains. Eight additional lineages (sequence types T5-T12) were identified. Four of the 12 sequence types included strains from more than one nominal species. Thus, sequence types could be equated with species in some cases or with complexes of closely related species in others. The largest complex, sequence type T4, which contained six closely related nominal species, included 24 of 25 keratitis isolates. Rns sequence variation was insufficient for full phylogenetic resolution of branching orders within this complex, but the mixing of species observed at terminal nodes confirmed that traditional classification of isolates has been inconsistent. One solution to this problem would be to equate sequence types and single species. Alternatively, additional molecular information will be required to reliably differentiate species within the complexes. Three sequence types of morphological group 1 species represented the earliest divergence in the history of the genus and, based on their genetic distinctiveness, are candidates for reclassification as one or more novel genera.  相似文献   

20.
A strain isolated from a biopsy sample taken from a slowly spreading skin granulation on a child's hand was found to have properties consistent with its classification in the genus Mycobacterium. An almost complete gene sequence of the 16S rRNA of the strain was determined following the cloning and sequencing of the amplified gene. The sequence was aligned with those available for mycobacteria, and phylogenetic trees were inferred with four tree-making algorithms. The organism, which formed a distinct phyletic line within the evolutionary radiation occupied by rapidly growing mycobacteria, was readily distinguished from members of validly described species of rapidly growing mycobacteria on the basis of its mycolic acid pattern and a number of other phenotypic features, notably its ability to form yellow pigmented colonies when incubated in the light. The name proposed for this new species is Mycobacterium novocastrense. The type strain is DSM 44203.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号