首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
文中采用准单片工艺研制了两级连续B/ J 类Doherty 功率放大器。采用非对称Doherty 架构,分析当 载波功放的阻抗逆变网络出现失配时,峰值功放非无穷输出阻抗对载波功放负载的影响,扩展了连续B/ J 类Doherty 功放的阻抗设计空间,在保持高回退效率的同时拓展带宽。该设计方法无需提取管芯的封装参数,摆脱对特定管芯 的依赖,更具有普遍性。测试结果表明,采用准单片工艺的2. 3~2. 7 GHz 频段连续B/ J 类Doherty 功率放大器输出 功率大于35 dBm,回退8 dB 漏极效率大于36%。  相似文献   

2.
通过分析传统Doherty功放的负载调制网络存在的带宽限制和晶体管输出电容对于效率的影响问题。利用改善阻抗变换比和补偿载波功放晶体管的输出电容的方法提出一种新型负载调制网络,使用GaN HEMT晶体管并基于此网络设计完成了一款高效率的Doherty功率放大器。该Doherty功率放大器采用不等分结构设计。此外,采用阶跃式阻抗匹配方法设计主辅功放的输入输出匹配网络来拓展Doherty功放的工作带宽。测试结果显示,在2.8~3.2 GHz频段内,饱和输出功率达到45 dBm,饱和漏极效率65%~73.18%。功率回退6 dB时,漏极效率在45%~50%之间,功率回退9 dB时,漏极效率在38.94%~44.68%之间。  相似文献   

3.
将EFJ模式功率放大器应用于Doherty功率放大器的载波功率放大器,利用EFJ类功率放大器的阻抗特性改善了Doherty功率放大器的带宽。此外,还引入后谐波控制网络来提高Doherty功率放大器的效率。功放的输入匹配电路采用阶跃式阻抗匹配来进一步拓展工作带宽。使用CGH40010F GaN 晶体管设计并加工完成了一款宽带高效率Doherty功率放大器。测试结果显示,在3.2~3.7GHz 频段内,饱和输出功率达到43dBm,饱和漏极效率60%~72.5%,增益大于10dB。功率回退6dB时,漏极效率40%~48.5%。  相似文献   

4.
逆F 类功放在接近饱和区工作时效率很高,将其与Doherty 功放结构相结合,可以实现一种在大功率回退的情况下仍然具有很高效率的射频功率放大器。本文设计了一款基于GaN HEMT 晶体管的高效率的逆F 类Doherty 功率放大器,工作频带为910MHz-950MHz。单音信号测试结果显示,在930MHz 处,功放回退7.5dB 后漏极效率仍高达64.2%。使用3 载波WCDMA信号作为测试信号,利用数字预失真技术进行线性化后,功放输出信号的上下边带邻信道功率比(ACPR)分别为-35.39dBc 和-35.9dBc。  相似文献   

5.
报道了一款采用0.25μm GaN HEMT工艺的8~12 GHz高效率负载调制平衡放大器(Load-modulated balanced amplifier,LMBA)。高峰均比信号传输场景中,功率放大器的效率性能会在输出功率回退区间内急剧恶化。基于LMBA技术,结合有源负载调制与预匹配输出结构,有效提高了功放在输出功率回退区间的效率。在连续波测试条件下,该芯片在8~12 GHz频段内,饱和输出功率为43.2~43.8 dBm,饱和效率为50.5%~55.7%。饱和输出功率回退6 dB时,效率为40.2%~44.5%,相较于归一化理想B类功率放大器具有15%~17%的效率提升。  相似文献   

6.
面向WiMAX的非对称Doherty功放研究与设计   总被引:1,自引:0,他引:1  
针对经典Doherty结构在WiMAX应用中存在的某些缺陷,提出了一种大功率管和负载牵引技术相结合的方法,解决了经典Doherty实际输出功率小于其饱和功率的问题.设计了一款应用于3.4~3.6 GHz频段WiMAX基站的非对称Doherty功率放大器,在功率回退9.5dB的范围内,功率附加效率(PAE)均在45%以上.采用添加前置延迟线和输出补偿线的方案,改善了峰值功放的负载调制效应,降低了载波功放向峰值功放的功率泄露.  相似文献   

7.
基于两级功率放大器架构,设计了一款平均输出功率为37 dBm(5 W)的高增益Doherty 功率放大器。 该器件通过增加前级驱动功率放大器提高Doherty 功率放大器的增益,采用反向Doherty 功率放大器架构,将λ/4 波 长传输线放置在辅助功放后端,相位补偿线放置在主功放前端,并使主功放输出匹配网络采用双阻抗匹配技术实现 阻抗变换,如此可扩宽功率放大器的工作带宽。连续波测试结果显示:3. 4~3. 6 GHz 工作频段内,饱和输出功率在 44. 5 dBm 以上,功率饱和工作点PAE 在43. 9%以上;在平均输出功率(37 dBm,5 W)工作点,回退量大于7. 5 dB,功 率附加效率PAE 为36. 8%以上,功率增益在31 dB 以上。  相似文献   

8.
针对未来多功能一体化雷达探测、通信等多样化需求,雷达系统的发射链路需要在探测和通信两种 不同应用下同时输出高效率特性。但是基于非恒包络的通信信号具有高峰均比特点,而雷达系统恒包络信号却可以在高的饱和功率点工作。要求发射链路的功放既能在饱和输出高效率,还要在回退功率处仍然具有高效率特性。文中的雷达发射通道设计中,使用10 W 内匹配式功率放大器,验证了同时具有雷达探测和无线通讯的宽带高效率Doherty 功放电路。功放电路对输入功分电路采用双节宽带设计, 并使用短路切贝雪夫阶梯阻抗变换结构设计输出合成网络, 使得Doherty 电路在功放原来14%相对工作带宽内具有回退高效率, 其中6 dB 功率回退效率最大提升10%, 并满足雷达工作特性参数要求。  相似文献   

9.
基于南京电子器件研究所0.5μm GaN HEMT工艺,设计了一款工作在1.8 GHz/2.3 GHz的大功率双频带非对称Doherty功率放大器。采用改进型的双频匹配网络结合双阻抗匹配的方法进行输出匹配电路设计,降低了传输线参数计算的复杂度,节省了电路的设计面积。实测结果表明,功放在两个频段内饱和输出功率分别为55.6 dBm和55.4 dBm,饱和漏极效率分别高于67%和66%。功率回退8 dB时,漏极效率分别为56%与53%。同时,在2.05 GHz附近的输出功率与漏极效率远低于两个工作频段,使功率放大器实现了较好的带间隔离性,满足了移动通信系统双频段工作的需求。  相似文献   

10.
基于GaN工艺设计了一款饱和输出功率为44 dBm、功率回退为9 dB的非对称Doherty功率放大器。为了提高增益,在Doherty功率放大器前方增加驱动级。通过对主放大器的输出匹配电路进行阻抗匹配优化设计,去掉λ/4阻抗变换线;辅助功放输出阻抗采用RC网络等效代替,控制输出匹配电路相位为0°,确保关断时为高阻状态;合路点的最佳阻抗直接选取50Ω,从而去掉λ/4阻抗变换线。芯片仿真结果表明,在3.3~3.6 GHz时,Doherty功率放大器的饱和输出功率达到44 dBm以上,功率增益达到25 dB以上,功率附加效率(PAE)达到50%以上;功率回退为9 dB时,PAE达到34.7%以上。Doherty功率放大器的版图尺寸为3.4 mm*3.3 mm,驱动级功率放大器的版图尺寸为1.5 mm*1.7 mm。  相似文献   

11.
针对功率回退时主路功率放大器不能有效进入饱和状态导致Doherty功率放大器回退效率低的问题,通过降低主路功率放大器的供电电压,实现了高回退效率,同时增大辅路功放管的尺寸弥补了电路的总输出功率。基于0. 1μm GaAs pHMET工艺,设计了一个26 GHz两级非对称的Doherty功率放大器。仿真结果表明,在26 GHz时增益达到16 dB,功放的饱和输出功率为27. 4 dBm,峰值功率附加效率(PAE)为40. 7%,输出功率回退7 dB时PAE仍达到38%,与传统Doherty功率放大器相比具有更高的回退效率,版图的尺寸为3. 2 mm×2. 2 mm。  相似文献   

12.
线性Doherty功放的优化设计   总被引:4,自引:1,他引:3       下载免费PDF全文
设计了一个高效率、高线性度的射频Doherty GSM基站功放。利用Doherty功放的载波放大器与峰值放大器之间的互调对消技术使Doherty功放的三阶互调干扰(IMD3)改善了11dBc;并通过相位补偿延迟线的前置处理进一步提高了功放的效率,使其效率比常用的平衡补偿线方案提高了4%左右。文中利用两个MRF9060功放管制作了一个GSM频段Doherty功放,其实测1dB压缩点功率(P1dB)达到了130W;双音测试表明:经过4.5dB的回退后三阶互调失真(IMD3)优于-35dBc,此时功率附加效率(PAE)高达47.3%;WCDMA 3GPP的测试结果表明:经过6dB回退后,其5MHz偏移量的邻道功率比(ACPR)优于-40.5dBc,PAE为43.5%,比AB类平衡功放的效率提高了17.8%。结果表明:该设计方案较好地解决了射频功放功率与效率之间的矛盾,适用于射频功放的设计。  相似文献   

13.
基于对传统两路Doherty功放存在的问题分析,文中对其结构进行改进,提出了一种新颖的非对称结构。该非对称结构采用相同的功放管,通过变换漏极与栅极电压分别对主辅功放进行负载牵引和源牵引以达到不同的饱和输出功率,从而实现更高的功率回退。基于该理论,结合互调对消技术和多谐波双向牵引技术设计并实现了应用于工作频段为2.57~2.62GHz的TD-LTE直放站功率放大器。在饱和输出功率回退9dB的平均输出功率处,功率附加效率(PAE)为38%,5MHz和10MHz偏移量的相邻信道功率比(ACPR)分别为-41dBc和-50dBc,实测结果显示Doherty功放的参数性能良好,满足TD-LTE直放站要求的同时验证了设计方案的正确性。  相似文献   

14.
为了进一步提高射频功放的输出能力,基于GaN HEMT功率器件,采用平衡式结构设计了一款工作频率为3.3 GHz 3.6 GHz的高效率逆F类Doherty结构射频功放。参照功放管的寄生参数等效电路网络,为获得逆F类功放理想的开关特性,设计了具有寄生参数补偿作用的谐波控制网络来抑制功放输出端的二次、三次谐波,同时结合Doherty功放结构特点,使其在6 dB功率回退的情况下仍具有较高的输出效率。仿真后,可得到其在3.3 GHz^3.6 GHz工作频带内的输出功率在40.4 dBm^41.8 dBm内,PAE为66%~77%,最大DE达到82.6%,功率回退6 dB处,功放的DE仍在69%左右,增益平坦度约为±1.5 dB。  相似文献   

15.
针对宽带高效率功放的设计要求,基于宽带匹配网络设计了一款GaN宽带高效率功率放大器,其工作频率覆盖整个S波段。仿真结果显示,该功放在整个S频段内漏极效率(DE)大于62%,功率附加效率(PAE)大于57%,增益大于10.6 dB。实测结果表明,该功放在整个频段内DE大于54%,PAE大于48%,增益大于9 dB,增益平坦度在1 dB以内,实现了S波段高效率宽带功率放大器的设计。  相似文献   

16.
张玉柱  张远见 《移动通信》2011,35(18):54-56
文章介绍了Doheny功放的基本原理,设计并实现了1880MHz-2025MHz(TD—F+A频段)频段的Doherty功率放大器。实测结果表明,以TD单载波为测试信号源,在最大输出功率回退9.0dB的情况下,其漏极效率达到35%以上。未加DPD时的ACPR小于-29.7dBm,完全满足要求。  相似文献   

17.
介绍了一种利用宽带输入匹配网络调整峰值功放输出电流,改善Doherty 功放负载调制效果和带内 效率的设计方法。理论分析表明,Doherty功放中峰值功放C 类偏置情况下带来的带内不一致开启特性会影响输出 电流和负载调制效果。通过引入宽带输入匹配网络,能有效改善它的开启不一致性。为验证分析结果设计了具有 宽带(采用简易实频技术)和窄带两种不同输入匹配网络,用于2.15GHz 频段LTE-A 的Doherty功放。仿真和测试 结果表明,功放的输出功率超过49dBm,在7dB 回退功率处,宽带输入匹配Doherty 功放的带内效率达到42% 以上, 效率波动由10%降低到2%。使用100MHz 宽带LTE-A 信号经过线性化改善后,在40dBm 输出时,宽带输入匹配网 络的Doherty功放上下边带ACLR(adjacent channel leakage ratio)指标为-45.1/-44.9dBc,效率为40.5%,均优于窄带输入匹配网络的Doherty功放。  相似文献   

18.
为了在功率回退时满足功率放大器对高效率的要求,提出了一种采用阻抗缓冲匹配技术的Doherty功率放大器。通过负载牵引仿真,得到功放管的最佳基波和谐波负载阻抗。在此基础上,采用一种谐波控制阻抗匹配网络设计方法来设计主/辅路放大器的输出匹配网络,实现了高回退效率。为了验证该方法的有效性,设计并实现了一个1.635 GHz高效率Doherty功率放大器。测试结果表明,该放大器的饱和功率大于44 dBm,峰值效率为75%,6 dB功率回退时的效率为70%。该方法能有效提高Doherty功率放大器的回退效率。  相似文献   

19.
为了降低基站能耗和简化散热设计,基于可有效提高功放效率的三级Doherty理论,研制了一款平均输出功率为50W的FDD-LTE基站三级Doherty功率放大器,并将其与数字预失真系统结合,在保证线性度的基础上,大幅提高了功放在高功率回退范围内的效率。LTE信号下的实际测试结果表明,设计的功放增益为12.5dB左右,平均输出功率处的功率附加效率(PAE)保持在40%左右,且在整个9dB回退范围内功率附加效率曲线相对平坦。此外,经过数字预失真系统纠正后的ACLR达-62dBc,满足现代功放高功率回退、高效率和高线性度的设计要求。  相似文献   

20.
对影响Doherty功放回退效率的因素进行了分析,从输入功率配置、载波功放与峰值功放栅压以及相位平衡等多重角度进行了仿真,并基于此讨论了DPA(Doherty power amplifier)输出功率回退点的效率空间,从该效率空间出发,可以选择合适的功率配置和栅偏压进行功放的设计。基于GaN HEMT器件对所设计的电路进行了加工、装配和测试。测试结果显示:在2.25GHz时,峰值效率为59%,输出功率为43.7dBm;输出在饱和点回退2dB时的效率为51%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号