首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
苏赋  吕沁  罗仁泽 《电信科学》2019,35(11):58-74
近年来,深度学习在计算机视觉领域中的表现优于传统的机器学习技术,而图像分类问题是其中最突出的研究课题之一。传统的图像分类方法难以处理庞大的图像数据,且无法满足人们对图像分类精度和速度的要求,而基于深度学习的图像分类方法突破了此瓶颈,成为目前图像分类的主流方法。从图像分类的研究意义出发,介绍了其发展现状。其次,具体分析了图像分类中最重要的深度学习方法(即自动编码器、深度信念网络与深度玻尔兹曼机)以及卷积神经网络的结构、优点和局限性。再次,对比分析了方法之间的差异及其在常用数据集上的性能表现。最后,探讨了深度学习方法在图像分类领域的不足及未来可能的研究方向。  相似文献   

2.
周涛  王媛媛  吴翠颖 《电视技术》2016,40(10):118-126
深度学习被引入机器学习领域与大数据的完美结合加快了人工智能实现的涉伐,近年来备受学术界和工业界的广泛关注.从深度学习的3种经典模型出发,主要做了5方面的工作:第一,针对深度信念网络,从网络结构(隐含层数、RBM结构、DBN级联),学习算法(基本算法、优化算法与其他方法结合),硬件系统(GPU,FPGA)三个方面进行总结;第二,针对卷积神经网络,从网络结构(输入层、隐含层、CNN个数),学习算法,硬件系统三个方面进行归纳;第三,针对堆栈自编码器,以时间为轴对其发展进行梳理,阐述相应自编码器的方法改进;第四,从医学图像分割、医学图像识别和计算机辅助诊断3个方面详细探讨深度学习在医学图像分析领域中的应用;最后从大数据浪潮、模型构建、特征学习、应用拓展4个方面对深度学习的发展进行展望.  相似文献   

3.
图像识别是故障检测的一种常见方法,传统的图像识别技术需要特定算法提取图像特征,然而特征提取依赖大量可观察的显著图像信息,对于某些信息量不足易受环境干扰的微小部件,识别精度往往较低。对此提出了基于深度学习的目标部件识别方法,将传统图像算法与深度学习相结合,有效提升了识别效率。在堆叠自编码器(SAE)预训练的基础上,建立了卷积神经网络(CNN),以货车故障动态图像检测系统(TFDS)为应用背景,研究了货车心盘螺栓的丢失故障检测。最终识别精度高于98%,具有较高的工程应用前景。  相似文献   

4.
雷达目标检测技术能够判断回波信号中目标存在与否,并提取目标位置信息。随着雷达图像质量的提升和人工智能技术的发展,利用雷达图像数据通过深度学习方法实现雷达目标检测功能成为一种新的思路。该文首先从雷达目标检测原理入手,对传统和现代两类检测方法进行了梳理,分析了各类检测方法的特点及适用性。然后针对现代雷达回波信号复杂性增大导致传统检测方法统计建模难的问题和机器学习方法特征提取难度大的问题,对深度学习目标检测方法进行了归纳,主要从深度学习算法、雷达回波图像数据类型和应用场景三个方面进行总结。最后分析了深度学习在雷达目标检测应用中面临的挑战,展望了未来的发展趋势。  相似文献   

5.
作为机器学习的分支,深度学习克服了机器学习在提取特征上的弱点,能从海量数据中提取抽象特征.其特征表达能力和泛化能力高,面对海量遥感影像数据也能高效准确的提取特征.遥感影像分类是从提取影像中各类地物特征并归类处理,是遥感影像处理中的关键技术.基于深度学习的遥感图像分类可以弥补传统机器学习分类精度不高、效率低和泛化能力不足...  相似文献   

6.
关节点行为识别由于其不易受外观影响、能更好地避免噪声影响等优点备受国内外学者的关注,但是目前该领域的系统归纳综述较少。该文综述了基于深度学习的关节点行为识别方法,按照网络主体的不同将其划分为卷积神经网络(CNN)、循环神经网络(RNN)、图卷积网络和混合网络。卷积神经网络、循环神经网络、图卷积网络分别擅长处理的关节点数据表示方式是伪图像、向量序列、拓扑图。归纳总结了目前国内外常用的关节点行为识别数据集,探讨了关节点行为识别所面临的挑战以及未来研究方向,高精度前提下快速行为识别和实用化仍然需要继续推进。  相似文献   

7.
关节点行为识别由于其不易受外观影响、能更好地避免噪声影响等优点备受国内外学者的关注,但是目前该领域的系统归纳综述较少.该文综述了基于深度学习的关节点行为识别方法,按照网络主体的不同将其划分为卷积神经网络(CNN)、循环神经网络(RNN)、图卷积网络和混合网络.卷积神经网络、循环神经网络、图卷积网络分别擅长处理的关节点数据表示方式是伪图像、向量序列、拓扑图.归纳总结了目前国内外常用的关节点行为识别数据集,探讨了关节点行为识别所面临的挑战以及未来研究方向,高精度前提下快速行为识别和实用化仍然需要继续推进.  相似文献   

8.
人工智能已覆盖诸多领域,尤其是在图像处理领域的应用已经十分成熟.作为深度学习典型算法的卷积神经网络在图像处理领域大放异彩,长久以来一直是学术界研究的热点.文章给出了图像处理的概念,简述了卷积神经网络及其在图像处理中所用到的几种典型模型,最后浅谈智能图像处理的未来发展趋势.  相似文献   

9.
作为深度学习算法中重要的环节,激活函数可以为神经网络引入非线性因素.大量学者通过提出或改进激活函数的方法在一定程度上提高了算法的优化及泛化能力.研究了现阶段的激活函数,将激活函数大致分为S系激活函数和ReLU系激活函数,从不同激活函数的功能特点和存在的饱和性、零点对称和梯度消失及梯度爆炸的现象进行研究分析,针对Sigm...  相似文献   

10.

手语识别涉及计算机视觉、模式识别、人机交互等领域,具有重要的研究意义与应用价值。深度学习技术的蓬勃发展为更加精准、实时的手语识别带来了新的机遇。该文综述了近年来基于深度学习的手语识别技术,从孤立词与连续语句两个分支展开详细的算法阐述与分析。孤立词识别技术划分为基于卷积神经网络(CNN)、3维卷积神经网络(3D-CNN)和循环神经网络(RNN) 3种架构的方法;连续语句识别所用模型复杂度更高,通常需要辅助某种长时时序建模算法,按其主体结构分为双向长短时记忆网络模型、3维卷积网络模型和混合模型。归纳总结了目前国内外常用手语数据集,探讨了手语识别技术的研究挑战与发展趋势,高精度前提下的鲁棒性和实用化仍有待于推进。

  相似文献   

11.
命名实体识别是自然语言处理领域的一项关键任务,其目的在于从自然语言文本中识别出具有特定含义的实体,如人名、地名、机构名和专有名词等。在命名实体识别任务中,研究人员提出过多种方法,包括基于知识和有监督的机器学习方法。近年来,随着互联网文本数据规模的快速扩大和深度学习技术的快速发展,深度学习模型已成为命名实体识别的研究热点,并在该领域取得显著进展。文中全面回顾现有的命名实体识别深度学习技术,主要分为四类:基于卷积神经网络模型、基于循环神经网络模型、基于Transformer模型和基于图神经网络模型的命名实体识别。此外,对深度学习的命名实体识别架构进行了介绍。最后,探讨命名实体识别所面临的挑战以及未来可能的研究方向,以期推动命名实体识别领域的进一步发展。  相似文献   

12.
基于深度学习的视频中人体动作识别进展综述   总被引:4,自引:0,他引:4       下载免费PDF全文
罗会兰  童康  孔繁胜 《电子学报》2019,47(5):1162-1173
视频中的人体动作识别是计算机视觉领域内一个充满挑战的课题.不论是在视频信息检索、日常生活安全、公共视频监控,还是人机交互、科学认知等领域都有广泛的应用.本文首先简单介绍了动作识别的研究背景、意义及其难点,接着从模型输入信号的类型和数量、是否结合了传统特征提取方法、模型预训练三个维度详细综述了基于深度学习的动作识别方法,及比较分析了它们在UCF101和HMDB51这两个数据集上的识别效果.最后分别从视频预处理、视频中人体运动信息表征、模型学习训练这三个角度对未来动作识别可能的发展方向进行了论述.  相似文献   

13.
基于深度学习的YOLO目标检测综述   总被引:1,自引:0,他引:1  
目标检测是计算机视觉领域的一个基础任务和研究热点。YOLO将目标检测概括为一个回归问题,实现端到端的训练和检测,由于其良好的速度-精度平衡,近几年一直处于目标检测领域的领先地位,被成功地研究、改进和应用到众多不同领域。该文对YOLO系列算法及其重要改进、应用进行了详细调研。首先,系统地梳理了YOLO家族及重要改进,包含YOLOv1-v4, YOLOv5, Scaled-YOLOv4, YOLOR和最新的YOLOX。然后,对YOLO中重要的基础网络,损失函数进行了详细的分析和总结。其次,依据不同的改进思路或应用场景对YOLO算法进行了系统的分类归纳。例如,注意力机制、3D、航拍场景、边缘计算等。最后,总结了YOLO的特点,并结合最新的文献分析可能的改进思路和研究趋势。  相似文献   

14.
随着计算机视觉技术的迅速发展以及人们对于建设智慧城市的渴望,车辆重识别技术取得了不小的突破。它可以助力于搜寻救援、打击犯罪等诸多领域。深度学习及神经网络为该项任务突破传统特征的瓶颈带来了可能,而随着各种大规模数据集的提出,越来越多的学者关注到了此项任务,并成为当下的研究热点。本文对车辆重识别任务的兴起、发展及现状进行了一定的归纳总结,提出了现有技术下的一些不足,并对未来的发展做出了一些思考与预测。  相似文献   

15.
16.
17.
为了提高卷积神经网络的识别精度,提出网络权值优化操作。构建SOM网络对样本进行预学习,从而自组织地挖掘样本的本质分布,并且计算网络的学习精度,将最优学习结果的神经元用于初始化卷积神经网络;而后对卷积神经网络总体权值进行迭代,记录最佳模型作为识别网络,实验结果表明优化后的卷积神经网络识别精度得到了提高。  相似文献   

18.
张天润 《移动信息》2023,45(10):167-169
文中旨在研究基于深度学习的垃圾邮件文本分类方法,该方法结合了卷积神经网络(CNN)和循环神经网络(RNN)的模型,通过对邮件文本进行特征提取和分类,能高效、准确地对垃圾邮件进行分类。文中以卷积神经网络和循环神经网络为实验对象,提出了一种垃圾邮件文本分类方法,并在公开数据集上进行了实验。实验结果表明,该方法在垃圾邮件文本分类任务上具有较高的准确率和召回率。  相似文献   

19.
深度学习研究发展至今已可以胜任各类识别、分类、生成任务,但是对于不同的任务,神经网络的结构或参数不可能只是微小的变化,依然需要专家进行调整.在这样的情况下,自动化地调整神经网络的结构或参数成为研究热点.其中,以达尔文自然进化论为灵感的神经进化成为主要优化方法.利用神经进化优化的深度学习模型以种群为基础,通过突变、重组等...  相似文献   

20.
目标检测是计算机视觉领域内的热点研究课题,在医疗、监控及航空等领域都有广泛应用。先对目标检测技术的背景进行了介绍,然后从基于锚框的两阶段目标检测算法、基于锚框的单阶段目标检测算法、基于Anchor Free的目标检测算法三个阶段分别进行介绍,同时还介绍了主流的数据集以及主要的性能评价指标。最后叙述了当前目标检测领域存在的挑战,展望了目标检测技术在未来的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号