首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
采用Fe(Ⅱ)和Fe(Ⅲ)对黄铜矿进行生物浸出,主要研究浸出过程中体系的pH值、铁离子浓度、细菌吸附率及铜浸出率变化规律。结果表明:介质中Fe(Ⅲ)含量不同,生成黄钾铁矾的形态不同。在Fe(Ⅲ)生物浸出体系中,絮状的黄钾铁矾逐渐生成并全部覆盖在黄铜矿表面,阻碍黄铜矿的浸出过程。在Fe(Ⅱ)生物浸出体系中,生成皮壳状、结核状的黄钾铁矾分散于浸出液中,不覆盖在黄铜矿表面,对黄铜矿的浸出没有阻碍作用。  相似文献   

2.
利用X-射线光电子能谱(XPS)和循环伏安(CV)法研究黄铜矿的钝化膜组成。浸出试验结果表明:无菌浸出和微生物浸出黄铜矿30 d后,Cu的浸出率分别为4.0%和21.5%,Fe的浸出率分别为3.8%和10.5%。XPS分析结果表明:黄铜矿经无菌浸出和微生物浸出后,黄铜矿晶格的中Fe原子优先溶解到溶液中,并且在其表面形成S22-、Sn2-和S0。此外,黄铜矿经微生物浸出后,其表面还检测到SO42-,并且认为SO42-是以黄钾铁矾的形式存在。CV研究结果表明:Cu1-xFe1-yS2-z(yx)和S0导致黄铜矿电极表面钝化。元素硫和黄钾铁矾包裹在黄铜矿表面对其浸出有一定的影响,然而二硫化物、多硫化物或者缺金属硫化物对阻碍黄铜矿浸出起更关键的作用。  相似文献   

3.
通过吸附、动电位、接触角和摇瓶浸出试验研究Leptospirillum ferriphilum菌作用前后黄铜矿表面性质的变化。采用不同能源物质(亚铁和黄铜矿粉)培养L.ferriphilum菌。结果表明,细菌可以很快吸附在黄铜矿表面,并且固体能源物质培养的细菌比液体能源物质培养的细菌可以更多、更快地吸附在矿物表面。与细菌作用后,黄铜矿的等电点朝着细菌等电点的方向移动。在添加与不添加能源物质时,黄铜矿的接触角表现出不同的变化趋势。XRD、SEM/EDS检测表明浸出过程中在黄铜矿表面生成了硫和黄钾铁矾。通过EDS检测可知在黄铜矿的分解过程中,铁优先从黄铜矿表面释放出来。在浸出过程中黄铜矿表面生成了钝化层,从而导致其浸出率很低。通过研究推测钝化层的主要成分是硫,而不是黄钾铁矾。  相似文献   

4.
采用X射线衍射(XRD)与X射线光电子能谱(XPS)研究黄铜矿在中度嗜热菌浸出过程中的表面产物变化。结果表明,在A. caldus,S. thermosulfidooxidans与L. ferriphilum浸出过程中,一硫化物(CuS)、二硫化物(S22?)、元素硫(S0)、多硫化物(Sn2?)与硫酸盐(SO42?)是黄铜矿表面的主要产物。在A. caldus浸出黄铜矿过程速率较慢,这主要是由于黄铜矿的不完全溶解产生多硫化物,限制了进一步的溶解。在S. thermosulfidooxidans与L. ferriphilum浸出黄铜矿过程中,多硫化物与黄钾铁矾是钝化膜的主要成分。元素硫不是导致黄铜矿生物冶金过程钝化的主要物质。  相似文献   

5.
黄铜矿表面生物氧化膜的形成过程   总被引:2,自引:0,他引:2  
在细菌浸出黄铜矿的过程中,浸出速率缓慢的原因是矿物表面会形成一层阻碍矿物与浸出液之间物质交换的钝化膜,这层膜的组成会随着浸出的进行而变化.利用SEM,EDS,XRD和XPS等对细菌浸出黄铜矿的过程中,矿物表面的形貌、组成及物相变化进行了研究.结果表明,黄铜矿在细菌浸出过程中依次形成了缺铁铜硫化物Cu1-xFe1-ySz(x0.氧化铁,羟基氧化铁和黄钾铁矾.由于浸矿混合细菌ASH-07对硫的氧化作用.硫化物层和单质硫层都是氧化膜形成过程中的中间产物,致密的黄钾铁矾层则对黄铜矿的浸出产生钝化作用.  相似文献   

6.
研究活性炭对四株典型嗜热古菌混合培养物(Acidianus brierleyi,Metallosphaera sedula,Acidianus manzaensis和Sulfolobus metallicus)在65°C时浸出纯黄铜矿过程中活性炭的催化作用和钝化现象的相关性。浸出实验表明,活性炭能够有效地促进黄铜矿的生物浸出和化学浸出。基于同步辐射技术的X射线衍射、铁的L-边和硫的K-边X射线吸收近边结构光谱学分析表明,在生物浸出过程中当氧化还原电位较低((27)400 mV)时,活性炭能通过原电池反应改变电子传递途径,生成更易溶解的次生矿物辉铜矿,从而增强黄铜矿的浸出。在添加活性炭的生物浸出过程的前期,黄钾铁矾迅速累积但铜离子的浸出速率未受到抑制,然而在生物浸出的后期,大量黄钾铁矾沉淀在矿物表面,从而抑制黄铜矿的进一步溶解。在添加活性炭时检测到了更多的单质硫,但由于嗜热古菌混合培养物具有很强的硫氧化活性,所以生成的单质硫被其消解,因此,未检测到其对黄铜矿浸出有显著影响。  相似文献   

7.
采用混合中度嗜热微生物研究4种碳材料(人造石墨、炭黑、活性炭和碳纳米管)对黄铜矿浸出的催化作用。结果表明,添加人造石墨和活性炭能使溶液pH值降低,氧化还原电位维持在合适的范围,使浸出液中总铁、三价铁浓度和矿渣表面吸附微生物的数量增加,最终提高黄铜矿中铜的浸出率;而添加炭黑和碳纳米管能抑制浸矿微生物的生长,最终导致浸出效率降低。X射线衍射分析表明,在添加人造石墨和活性炭实验组中,黄钾铁矾和硫膜是钝化层的主要成分,但钝化层的形成不会影响黄铜矿的进一步分解。此外,人造石墨和活性炭的添加使浸出体系中游离微生物和吸附微生物的群落结构发生改变。在黄铜矿浸出末期,硫氧化茵A.caldus S1(丰度为93%~98%)成为优势菌种,而铁氧化菌L.ferriphilum YSK所占比例仅为1%~2%。  相似文献   

8.
采用X射线衍射(XRD)与X射线光电子能谱(XPS)研究黄铜矿在中度嗜热菌浸出过程中的表面产物变化。结果表明,在A.caldus,S.thermosulfidooxidans与L.ferriphilum浸出过程中,一硫化物(Cu S)、二硫化物(S2-2)、元素硫(S0)、多硫化物(S2-n)与硫酸盐(SO2-4)是黄铜矿表面的主要产物。在A.caldus浸出黄铜矿过程速率较慢,这主要是由于黄铜矿的不完全溶解产生多硫化物,限制了进一步的溶解。在S.thermosulfidooxidans与L.ferriphilum浸出黄铜矿过程中,多硫化物与黄钾铁矾是钝化膜的主要成分。元素硫不是导致黄铜矿生物冶金过程钝化的主要物质。  相似文献   

9.
基于同步辐射X射线衍射(SR-XRD)和硫/铁/铜K边X射线吸收近边结构(XANES)光谱学等技术,研究了嗜酸热古菌Acidianus manzaensis浸出黄铜矿过程中次级产物的形成和演变机制。浸出实验结果表明,经过10 d的生物浸出黄铜矿的浸出率为82.4%,此时黄铜矿的表面被显著腐蚀且覆盖了一层浸出产物。在生物浸出过程中,矿物表面次级产物的形成及演变有如下规律:1)第2 d和第4 d检测了少量单质硫、斑铜矿和辉铜矿;2)第6 d和10 d斑铜矿和辉铜矿消失,但是铜蓝开始产生,并且黄钾铁矾逐渐变成主要产物。这些结果表明浸出过程中首先在低电位(360~461 mV)下形成金属缺失型辉铜矿和斑铜矿,随着电位升高,在高电位(461~531 m V)下逐渐转化为了铜蓝。  相似文献   

10.
3种典型能量代谢菌浸出黄铜矿及其硫形态的转化   总被引:1,自引:0,他引:1  
比较了3种典型嗜中温铁/硫代谢菌——Acidithiobacillus ferrooxidans、Leptospirillum ferriphilum及Acidithiobacillus thiooxidans单独及混合浸出黄铜矿过程中细菌硫氧化、铁氧化情况。同时利用XRD、硫的K边X射线吸收近边结构光谱(XANES)等分析手段研究3种细菌单独/混合浸出黄铜矿过程中矿物组成成分和矿物表面硫的形态变化。结果表明:在浸出初期电位低于400 mV(vs SCE)时,黄铜矿的浸出速率较快,此后电位迅速升高至540 mV,黄铜矿浸出速率明显变慢。混合菌浸出时体系的硫/铁氧化活性较单一菌高,根据XANES拟合分析发现,混合菌浸出时矿物表面元素硫及黄钾铁矾积累量明显减少,浸出初期辉铜矿产量明显高于单一细菌浸出的。  相似文献   

11.
Bioleaching of chalcopyrite by pure and mixed culture   总被引:4,自引:0,他引:4  
The bioleaching of chalcopyrite in shake flasks was investigated by using pure Acidithiobacillusferrooxidans and mixed culture isolated from the acid mine drainage in Yushui and Dabaoshan Copper Mine in China, marked as YS and DB, respectively. The mixed culture consisted mainly of Acidithiobacillus fOrrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum spp. (Leptospirillum ferriphilum and Leptospirillum ferrooxians). The results show that the mixed culture is more efficient than the pure Acidithiobacillus ferrooxidans because of the presence of the sulfur-oxidizing cultures that positively increase the dissolution rate and the recovery of copper from chalcopyrite. The pH value decreases with the decrease of chalcopyrite leaching rate, because of the formation ofjarosite as a passivation layer on the mineral surface during bioleaching. In the bioleaching using the mixed culture, low pH is got from the sulfur oxidizing inhibiting, the formation ofjarosite. The copper extraction reaches 46.27% in mixed culture and 30.37% in pure Acidithiobacillusferrooxidans after leaching for 75 d.  相似文献   

12.
The alteration of surface properties of chalcopyrite after biological conditioning with Leptospirillum ferriphilum was studied by adsorption, zeta-potential, contact angle and bioleaching tests. The strains of L. ferriphilum cultured using different energy sources (either soluble ferrous ion or chalcopyrite) were used. The adhesion of bacteria to the chalcopyrite surface was a fast process. Additionally, the adsorption of substrate-grown bacteria was greater and faster than that of liquid-grown ones. The isoelectric point (IEP) of chalcopyrite moved toward that of pure L. ferriphilum after conditioning with bacteria. The chalcopyrite contact angle curves motioned diversely in the culture with or without energy source. The results of X-ray diffraction patterns (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) analysis indicate that the surface of chalcopyrite is covered with sulfur and jarosite during the bioleaching process by L. ferriphilum. Furthermore, EDS results imply that iron phase dissolves preferentially from chalcopyrite surface during bioleaching. The copper extraction is low, resulting from the formation of a passivation layer on the surface of chalcopyrite. The major component of the passivation layer that blocked continuous copper extraction is sulfur instead of jarosite.  相似文献   

13.
The pressure leaching mechanism of chalcopyrite was studied by both leaching tests and in-situ electrochemical measurements. The effects of leaching temperature, oxygen partial pressure, and calcium lignosulphonate, on copper extraction and iron extraction of chalcopyrite pressure leaching were investigated. The leaching rate is accelerated by increasing the leaching temperature from 120 to 150 °C and increasing oxygen partial pressure to 0.7 MPa. The release of iron is faster than that of copper due to the formation of iron-depleted sulfides. Under the optimal leaching conditions without calcium lignosulphonate, the copper and iron extraction rates are 79% and 81%, respectively. The leaching process is mixedly controlled by surface reaction and product layer diffusion with an activation energy of 36.61 kJ/mol. Calcium lignosulphonate can effectively remove the sulfur passive layer, and the activation energy is 45.59 kJ/mol, suggesting that the leaching process with calcium lignosulphonate is controlled by surface chemical reactions. Elemental sulfur is the main leaching product, which is mixed with iron-depleted sulfides and leads to the passivation of chalcopyrite. Electrochemical studies suggest that increasing the oxygen partial pressure leads to increasing the cathodic reaction rate and weakening the passivation of chalcopyrite.  相似文献   

14.
In order to investigate the contributions of contact and non-contact cells of Acidianus manzaensis(A.manzaensis) YN25 to the bioleaching of chalcopyrite,three experiments were carried out in the modified shake flasks.The redox potential,pH,cell density,copper and iron ions in the solution were monitored,and the morphological feature and chemical composition of the leached residues were analyzed.The highest leaching efficiency of Cu and Fe was reached in the experiment where the A.manzaensis YN25 could contact the surface of the chalcopyrite.There was no precipitation of jarosite in the leached residues of three experiments,but there was elemental sulfur in the leached residues when the cells could not contact the chalcopyrite.From these results,it is apparent that the leaching of the chalcopyrite is the cooperative action of the contact and non-contact A.manzaensis YN25.  相似文献   

15.
The relatedness between catalytic effect of activated carbon and passivation phenomenon during chalcopyrite bioleaching by mixed thermophilic Archaea culture (Acidianus brierleyi, Metallosphaera sedula, Acidianus manzaensis and Sulfolobus metallicus) at 65 °C was studied. Leaching experiments showed that the addition of activated carbon could significantly promote the dissolution of chalcopyrite for both bioleaching and chemical leaching. The results of synchrotron-based X-ray diffraction, iron L-edge and sulfur K-edge X-ray absorption near edge structure spectroscopy indicated that activated carbon could change the transition path of electrons through galvanic interactions to form more readily dissolved secondary mineral chalcocite at a low redox potential (<400 mV) and then enhanced the copper dissolution. Jarosite accumulated immediately in the initial stage of bioleaching with activated carbon but copper dissolution was not hindered. However, much jarosite precipitated on the surface of chalcopyrite in the late stage of bioleaching, which might account for the decrease of copper dissolution rate. More elemental sulfur (S0) was also detected with additional activated carbon but the mixed thermophilic Archaea culture had a great sulfur oxidation activity, thus S0 was eliminated and seemed to have no significant influence on the dissolution of chalcopyrite.  相似文献   

16.
原电池效应对混合硫化矿细菌浸出的影响   总被引:14,自引:1,他引:14  
研究了黄铜矿与黄铁矿混合矿细菌浸出过程的原电池效应,提出了原电池效应模型。研究结果表明:当黄铜矿细菌浸出过程中加入黄铁矿及C时,浸出率大大提高,黄铜矿浸出30d,Cu浸出率可达40%;单一黄铁矿细菌浸出时,黄铁矿会被大量氧化分解,而当与黄铜矿混合浸出时,黄铜矿氧化加快,黄铁矿氧化速率降低;加入C及黄铁矿与黄铜矿混合时,由于接触电位的影响,黄铜矿氧化反应电流增大、反应起始电位负移,反应加尉,而黄铁矿的氧化反应受到抑制;混合矿浸出过程中,黄铜矿表面Cu含量较单一矿浸出时低得多,说明混合效应对浸出具有强化作用;黄铜矿中Cu浸出愈多,表面生成的元素硫愈多,黄铁矿细菌浸出时,表面不会有元素硫产生。  相似文献   

17.
Bioleaching of chalcopyrite often encountered the formation of passivation layer, which inhibited the leaching process and resulted in a low leaching rate. This inhibitory effect can be eliminated by thermophilic biole- aching. The industrial test of BioCOP technology based on thermophiles was successfully completed, which confirmed the feasibility of chalcopyrite bioleaching. However, industrial leaching rate of chalcopyrite heap bioleaching is lower. This paper described the development status and industrial test of chalcopyrite heap bioleaching technology. The reasons for the lower efficiency of chalcopyrite heap bioleaching were analyzed. The strategies for successful chalcopyrite heap bioleaching were proposed.  相似文献   

18.
Gold leaching was influenced in association with silver and polymetal sulphide minerals. A packed bed was adopted to single out the galvanic and passivation effects with four sets of minerals: pyrite–silica, chalcopyrite–silica, sphalerite–silica and stibnite–silica. Pyrargyrite enhanced Au recovery to 77.3% and 51.2% under galvanic and passivation effects from pyrite (vs 74.6% and 15.8%). Pyrargyrite in association with sphalerite also enhanced Au recovery to 6.6% and 51.9% (vs 1.6% and 15.6%) under galvanic and passivation effects from sphalerite. Pyrargyrite associated with chalcopyrite retarded gold recovery to 38.0% and 12.1% (vs 57% and 14.1%) under galvanic and passivation effects. Accumulative silver minerals enhanced Au recovery to 90.6% and 81.1% (vs 74.6% and 15.8%) under galvanic and passivation impacts from pyrite. Silver minerals with sphalerite under galvanic and passivation effects enhanced Au recovery to 71.1% and 80.5% (vs 1.6% and 15.6%). Silver minerals associated with chalcopyrite retarded Au recovery to 10.2% and 4.5% under galvanic and passivation impacts (vs 57% and 14.1%). Stibnite retarded Au dissolution with pyrargyrite and accumulative silver minerals. Pyrargyrite and accumulative silver enhanced gold dissolution for free gold and gold associated with pyrite and sphalerite. Gold dissolution was retarded for gold and silver minerals associated with chalcopyrite and stibnite.  相似文献   

19.
绢云母对黄铜矿微生物浸出的影响   总被引:3,自引:0,他引:3  
采用以Acidithiobacillus ferrooxidans为主的混合菌,研究绢云母对微生物浸出黄铜矿的影响。结果表明,铜的浸出率随着绢云母粒度的减小而增加,随着绢云母质量分数的增加而呈先升高后降低的趋势。在添加粒度为-33μm、质量分数为5.0%的绢云母时,铜的最高浸出率为54.88%,比不添加绢云母时的铜浸出率提高了约12%,表明绢云母能促进黄铜矿的微生物浸出。绢云母的加入可使浸出体系pH值降低,最终pH值低于1.22。在浸出过程中,新生成的物质主要是铵黄铁矾,它覆盖于黄铜矿的表面,对微生物浸出铜有一定的阻碍作用。  相似文献   

20.
The effects of visible light and Cd2+ ion on chalcopyrite bioleaching in the presence of Acidithiobacillus ferrooxidans (A. ferrooxidans) were studied by scanning electron microscopy (SEM), synchrotron radiation X-ray diffraction (SR-XRD), and X-ray photoelectron spectroscopy (XPS). The results of bioleaching after 28 days showed that the copper dissolution increased by 4.96% with only visible light, the presence of Cd2+ alone exerted slight inhibition effect on chalcopyrite dissolution and the concentration of dissolved copper increased by 14.70% with visible light and 50 mg/L Cd2+. The results of chemical leaching showed that visible light can promote the circulation of iron. SEM results showed that Cd2+ promoted the attachment of A. ferrooxidans on chalcopyrite surface under visible light. SR-XRD and XPS results indicated that visible light and Cd2+ promoted chalcopyrite dissolution, but did not inhibit the formation of passivation. Finally, a model of synergistic catalysis mechanism of visible light and Cd2+ on chalcopyrite bioleaching was proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号