首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 967 毫秒
1.
周建华  王姝歆  颜景平 《测控技术》2004,23(6):32-33,36
对于微型仿昆飞行机器人驻飞时姿态的控制,提出了一个基于平均力矩的控制方案,并且通过改变翅的迎角来获得所需的姿态控制平均力矩.在每个拍动周期结束后,根据状态反馈误差调整迎角.在假设驻飞时姿态偏离角度较小的情况下,对控制系统进行了线性化近似和解耦.最后对控制系统进行了仿真,仿真结果表明了该系统具有鲁棒性.  相似文献   

2.
微型仿昆飞行机器人驻飞时姿态控制的研究   总被引:3,自引:0,他引:3  
对于微型仿昆飞行机器人驻飞时姿态的控制,提出了一个基于平均力矩的控制方案,并且通过改变翅的迎角来获得所需的姿态控制平均力矩。在每个拍动周期结束后.根据状态反馈误差调整迎角。在假设驻飞时姿态偏离角度较小的情况下,对控制系统进行了线性化近似和解耦。最后对控制系统进行了仿真,仿真结果表明了该系统具有鲁棒性。  相似文献   

3.
针对四旋翼飞行器的姿态与位置控制问题,提出基于PID神经网络的控制方法。建立四旋翼飞行器的数学模型,引入四旋翼飞行器联合仿真平台,利用Matlab设计PID神经网络姿态控制器,训练后能达到良好的控制效果,最后设计PID神经网络位置控制器并进行训练。仿真结果表明,该控制方法在性能上明显优于传统PID,对飞行器有良好的控制效果。  相似文献   

4.
基于估计参数的飞行器编队飞行相对姿态控制   总被引:1,自引:1,他引:0  
本文建立了空间飞行器编队飞行的相对姿态动力学模型,用姿态四元数表示的动力学模型避免了大角度相对姿态变化时的奇异问题.利用Lyapunov理论控制方法,设计了带神经网络参数估计器的自校正控制器,减轻了编队飞行器的测量和通信负担.证明了控制器对模型误差具有较好的鲁棒性.仿真结果验证了参数估计器可以准确的估计未知参数;基于估计参数的控制器可以实现相对姿态的较精确控制.  相似文献   

5.
微型飞行器具有高度的非线性特性,且气动参数具有不确定性,难以建立精确的数学模型;为实现其姿态、速度、以及高度的精确鲁棒控制,基于自抗扰控制方法设计了微型飞行器速度回路和高度回路的控制器;首先建立了微型飞行器的非线性模型,然后利用扩张状态观测器对飞行器状态和气动不确定性因素进行了估计,并通过非线性反馈对模型不确定性部分和状态耦合进行补偿,实现了纵向通道的解耦控制;通过仿真对所设计的控制器进行性能验证,结果表明自抗扰控制器能够实现对微型飞行器的快速稳定控制,且不依赖于精确的飞行器数学模型,具有良好的鲁棒性。  相似文献   

6.
研究飞行器优化姿态控制问题,高超声速飞行器具有的快时变、非线性、强耦合特性给姿态控制系统设计带来一定难度.针对飞行器的特性分析,将姿态动力学模型分解为姿态角与角速度跟踪的内、外两回路,采用动态逆方法设计了双回路控制系统结构,从而在实现完全解耦的同时有效降低了设计难度.同时针对动态逆方法过于依赖精确数学模型的局限性,设计PID神经网络控制器,利用神经网络的无限逼近能力调整自身网络权重矩阵参数值,使控制器对不确定因素与未知干扰具有一定的自适应能力.在标称和拉偏情况下进行仿真,结果表明,控制姿态角的跟踪超调量可在1.5%以内,侧滑角的耦合量不足1度,满足对飞行器控制优化的要求.  相似文献   

7.
针对再入飞行器的姿态跟踪问题,基于递归神经网络提出最优跟踪控制.采用反步法和递归神经网络,设计自适应前馈控制,将再入飞行器的最优姿态跟踪问题转化为等价的姿态角误差/角速率误差最优调节问题.采用自适应动态规划技术,解决最优调节问题.引入神经网络估计最优控制中的代价函数,推导最优反馈控制律,同时保证Hamilton–Jac...  相似文献   

8.
马克茂 《控制与决策》2013,28(2):201-204
针对大型空间飞行器的大角度姿态控制问题,考虑航天器惯量矩阵中的不确定性和外部扰动力矩,应用高阶滑模控制方法设计了姿态跟踪控制律.采用的二阶滑模控制方法改善了系统针对不确定性及外部扰动的鲁棒性,并减弱了振颤现象.针对所设计的控制器进行了仿真验证,并与一阶滑模控制进行了对比,仿真结果表明了所提出方法的有效性.  相似文献   

9.
针对高超声速飞行器再入姿态模型,研究气动舵面故障时的再入姿态容错控制.根据高超声速飞行器再入初期的特点,通常需要反作用控制系统(Reaction Control Systems,RCS)协助气动舵面完成姿态控制.采用Backstepping方法获得期望力矩,将气动舵面视为首要执行机构,在气动舵面之间控制分配期望的力矩.如果气动舵面不能达到期望力矩,则开启RCS,由RCS提供气动舵面不能提供的力矩.考虑舵面发生部分失效和卡死故障情况,设计基于控制分配算法的容错控制策略,使得系统在故障情况下仍旧保持稳定并恢复追踪性能.  相似文献   

10.
由于无人驾驶飞行器更多的参与了单独的具有挑战性的任务,对其飞行时进行敏捷控制已经成为必须;当为飞行器设计控制器来执行某种飞行操作时,最关心问题之一就是选用哪一种姿态描述;四元数描述法具有较少的密集计算并且提供了奇异自由的解决方案以及具有特殊的属性,可以利用它设计简单的、通用的姿态控制器;文章的主要目的是描述一个基于四元数的姿态控制器的设计和实现;该控制器关注固定翼微型飞行器脱耦滚动控制和悬停到水平飞行模式的转换;仿真结果表明了基于四元数的控制方法所设计的控制器能够对飞行器进行有效性的控制并为其提供理想的飞行姿态。  相似文献   

11.
李明锁 《测控技术》2012,31(1):96-100
针对无人机受扰运动,基于Backstepping方法和非线性滑模控制提出了一种鲁棒神经网络飞行控制方案。对无人机姿态角速度层的系统不确定性项,采用径向基函数神经网络并对其权值进行在线调整,从而实现对其进行逼近。将回馈递推设计方法与滑模控制方法结合起来,基于神经网络的输出为无人机设计了一种回馈递推滑模飞行控制器。所设计的飞行控制器用于无人机的姿态控制,仿真结果表明所研究的无人机鲁棒神经网络飞行控制方案是有效的。  相似文献   

12.
研究无人机飞行稳定性控制问题,由于无人机飞行控制系统存在时变外部干扰,飞行过程中升阴比变化激烈,控制稳定性难度较大。利用滑模控制良好的鲁棒能力提出一种神经网络的鲁棒飞行控制方法。因神经网络有良好非线性逼近能力,可对无人机飞行系统中的不确定进行在线逼近,并将神经网络权值误差引入到权值的自适应律中用以改善系统的动态性能。利用神经网络的组合,设计无人机鲁棒滑模飞行控制器。控制器分为两部分,一部分是等效控制器,另一部分是滑模控制器,能有效减小系统的跟踪误差。最后将所设计的鲁棒滑模控制对无人机飞行姿态控制进行仿真。仿真结果表明,新方法能提高无人机的鲁棒飞行控制能力且能实现无人机姿态的精确跟踪和稳定性控制。  相似文献   

13.
针对安装有惯性测量单元和摄像机的低成本四旋翼无人机,研究无位置、速度、航向测量情况下的机动目标基于图像的跟踪控制方法.首先,结合无人机的动力学方程在图像空间中推导了系统的误差方程.其次,为克服无航向测量的问题,设计了一种位置控制器,使用图像矩作为反馈输入并输出油门和姿态指令.最后,针对缺少图像速度测量问题,设计了一种super-twisting滑模观测器和控制器,生成的期望姿态和拉力指令无颤振,并通过李雅普诺夫理论证明了控制系统的稳定性.最终无人机通过调整倾斜姿态实现了跟踪飞行,且避免了响应慢的航向调整.跟踪机动目标的仿真结果验证了所提出方法的有效性.  相似文献   

14.
针对四旋翼无人机姿态控制中模型不完整、部分参数和扰动不确定的问题,提出了一种基于神经网络的自适应控制方法,采用RBF神经网络对无人机姿态动力学模型中不确定和扰动部分进行学习,设计了以类反步法为基础,包含反馈控制和神经网络控制的自适应控制器,实现了对未知动态的准确逼近,解决了传统控制方法中过于依赖精确模型的问题。同时设计了神经网络的权值自适应律,实现了控制过程中的在线学习和调整,并且通过李雅普诺夫方法证明了闭环系统的稳定性。仿真结果表明,在存在较大扰动的情况下,上述控制器可得到很好的控制效果,可以实现误差的快速收敛,具有较好的鲁棒性和自适应性。  相似文献   

15.
三轴车载惯性稳定平台为复杂的MIMO非线性系统,针对其在不确定扰动下的伺服控制问题,本文设计了一种神经网络反演滑模控制器(NNBSMC).首先,选用反演法对其解耦,同时引入滑模控制律增加系统的抗干扰性;其次针对框架间的非线性摩擦力与系统耦合选用RBF神经网络作为扰动估计器,以便实时估计与补偿;然后采用前向增稳通道应对建...  相似文献   

16.
本文针对四旋翼无人机研究了鲁棒反步姿态控制策略.由于四旋翼无人机结构复杂,其非线性数学模型难以精确建立,因此在控制器设计过程中需要综合考虑模型不确定性、未知外部干扰、输入饱和以及姿态受限等因素.针对模型中的不确定项,使用神经网络进行逼近;对于外部未知干扰,使用非线性干扰观测器进行补偿;使用双曲正切函数逼近饱和函数,解决输入饱和问题;同时使用界限Lyapunov函数设计控制器,确保姿态满足限制条件.最后,设计四旋翼无人机反步姿态控制器,并根据Lyapunov稳定性定理证明了闭环控制系统的有界稳定.仿真结果表明了所研究控制方法的有效性.  相似文献   

17.
针对小型无人直升机的控制问题,设计了一种基于神经网络前馈的非线性鲁棒控制算法.算法主要由两部分组成:基于三层神经网络的前馈,用以补偿无人直升机姿态动力学模型中的不确定项;基于符号函数积分的鲁棒控制,用以补偿未知外界扰动;基于Lyapunov分析方法证明了控制器可实现姿态角的半全局渐近跟踪.在三自由度实验平台上对所设计的控制算法进行了实验验证,结果表明:提出的设计取得了较好的姿态控制效果,并对外界未知风扰具有较好的鲁棒性.  相似文献   

18.
Micro air vehicles have emerged as a popular option for diverse robotic and teleoperated applications in both open terrain and urban environments because of their inherent stealth and portability. To perform many of the tasks envisioned for micro air vehicles, agility is essential. To date, research efforts to improve agility have focused primarily on constructing complex controllers to enable existing vertical-take-off- and-landing vehicles, such as remote-controlled helicopters and quadrotors, to perform aerobatic maneuvers autonomously. In this work, we adopt a system-level perspective and analyze a new design for a rotary-wing micro air vehicle that utilizes gyroscopic dynamics for attitude control. Unlike traditional vehicles where attitude control moments are generated by aerodynamic control surfaces, the proposed vehicle will leverage the existing angular momentum of its counter rotating components. This paradigm has the potential to yield significant increases in agility when compared to state-of-the-art micro vertical take-off and landing vehicles. The proposed design reduces mechanical complexity by precluding the use of complex mechanisms, such as the swashplate. The capacity to rapidly generate large gyroscopic control moments, coupled with the precision gained from eliminating the need for complex and restrictive aerodynamic models, improves both agility and adaptability. We present the development of a gyroscopically controlled micro air vehicle including comprehensive models of the dynamics and the aerodynamics with an emphasis on the design and analysis of such systems. A dynamics simulator that incorporates these models and mechanical hardware solutions to challenges that arose during prototyping will also be presented.  相似文献   

19.
基于非线性L1自适应动态逆的飞行器姿态角控制   总被引:1,自引:0,他引:1  
钊对常规动态逆控制器不能有效抵消系统中的不确定性这一缺点,提出了一种非线性L_1自适应动态逆控制方法.该方法能够克服常规动态逆的不足,在保证系统鲁棒性的前提下,提升飞行器姿态角控制效果.首先,采用时标分离原理,将姿态角控制系统分为内外两个回路:外回路采用常规动态逆控制器,用于姿态角的跟踪控制;内回路采用非线性L_1自适应控制器,用于角速率的控制.其中,L_1自适应控制器由静态反馈控制器和自适应控制器组成:静态反馈控制器通过状态反馈实现,用于保证内回路的稳定和具有期望的闭环特性;自适应控制器由状态观测器、自适应律和控制律组成,用于抵消系统中的不确定性.其次,对所提控制方法的稳定性进行了分析,结果证明了该控制方法能够保证内回路的稳定和外回路的误差有界.最后,在综合考虑多种不确定性的情况下,将本文提出的非线性L_1自适应动态逆控制方法用于某无人飞行器姿态角控制,仿真结果验证了该控制方法的有效性和鲁棒性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号