共查询到19条相似文献,搜索用时 109 毫秒
1.
2.
云服务提供商在给用户提供海量虚拟资源的同时,也面临着一个现实的问题,即怎样调度这些资源,以最小的代价(完工时间、执行费用、资源利用率等)完成工作流的执行。针对IaaS环境下的工作流调度问题,以完工时间和执行费用作为目标,提出了一种基于分解的多目标工作流调度算法。该算法结合了基于列表的启发式算法和多目标进化算法的选择过程,采用一种分解方法,将多目标优化问题分解为一组单目标优化子问题,然后同时求解这些单目标子问题,使得调度过程更为简单有效。算法利用天马项目发布的现实世界中的工作流进行实验,结果表明,和MOHEFT算法以及NSGA-II*算法相比较,所提出的算法能得到更优的Pareto解集,同时具有更低的时间复杂度。 相似文献
3.
张晓东 《计算机工程与设计》2021,42(7):1948-1956
云计算弹性的资源提供和虚拟机性能的不稳定性使得工作流的执行面临诸多不确定性.针对此问题,考虑执行时间具有不确定性,基于执行时间和代价的同步优化,提出同步满足健壮性的三目标优化工作流调度算法.以满足帕累托最优的均衡最优解集的形式进行建模,以启发式方式对模型求解.为衡量均衡解的质量,设计基于超体积的评估机制,得到冲突目标的... 相似文献
4.
6.
移动云计算技术可帮助移动用户在执行工作流任务时将一些任务迁移至云端服务器执行,从而节省移动设备的电池能耗,并提高计算能力.传统研究工作在进行移动云计算环境中的任务调度时缺乏对能耗和运行时间的联合优化.为了实现有效的任务调度,基于工作流图中任务执行的先后关系,分析了采用动态电压频率调节技术的移动设备处理器执行工作流任务的运行时间与能耗,并考虑了将任务通过无线信道迁移到云端服务器执行所需的时间,给出了能耗与执行时间联合优化的任务调度模型和目标方程.提出基于模拟退火算法的任务调度方法,分析了算法时间复杂度,进行了系统性的对比实验,评估了所提出方法的正确性和有效性. 相似文献
7.
8.
9.
多目标最优化云工作流调度进化遗传算法 总被引:1,自引:0,他引:1
为了实现云环境中科学工作流调度的执行跨度和执行代价的同步优化,提出了一种多目标最优化进化遗传调度算法MOEGA。该算法以进化遗传为基础,定义了任务与虚拟机映射、虚拟机与主机部署间的编码机制,设计了满足多目标优化的适应度函数。同时,为了满足种群的多样性,在调度方案中引入了交叉与变异操作,并使用启发式方法进行种群初始化。通过4种现实科学工作流的仿真实验,将其与同类型算法进行了性能比较。结果表明,MOEGA算法不仅可以满足工作流截止时间约束,而且在降低任务执行跨度与执行代价的综合性能方面也优于其他算法。 相似文献
10.
针对云计算环境下任务调度问题,为减少任务完工时间,同时降低任务执行费用,提出一种改进的基于多目标免疫系统的任务调度算法IMISA来寻找较优的可行分配方案。与传统分配适应度值不同,该算法将抗体群划分为非支配解集和支配解集,分别将非支配解的独立支配区域面积、支配解与所有非支配解所围成的多边形面积作为相应的抗体-抗原亲和力,根据相应亲和度计算克隆比例后克隆变异生成子代。在CloudSim平台上进行仿真实验,结果表明,与NSGA-Ⅱ及多目标免疫系统算法(MISA)相比,IMISA能够找到具有更短完工时间及更小的执行费用的调度方案,同时获得的Pareto解集也具有更好的分布性。 相似文献
11.
云计算和移动互联网的不断融合,促进了移动云计算的产生与发展.在移动云计算环境下,用户可将工作流的任务迁移到云端执行,这样不但能够提升移动设备的计算能力,而且可以减少电池能源消耗.但是不合理的任务迁移会引起大量的数据传输,这不仅损害工作流的服务质量,而且会增加移动设备的能耗.基于此,本文提出了基于延时传输机制的多目标工作流调度算法MOWS-DTM.该算法基于遗传算法,结合工作流的调度过程,在编码策略中考虑了工作流任务的调度位置和执行排序.由于用户在不断移动的过程中,移动设备的无线网络信号也在不断变化.当传输一定大小的数据时,网络信号越强则需要的时间越少,从而移动设备的能耗也越少.而且工作流结构中存在许多非关键任务,延长非关键任务的执行时间并不会对工作流的完工时间造成影响.因此,本文在工作流调度过程中融入了延时传输机制DTM,该机制能够同时有效地优化移动设备的能耗和工作流的完工时间.仿真结果表明,相比MOHEFT算法和RANDOM算法,MOWS-DTM算法在多目标性能上更优. 相似文献
12.
云计算是一种新兴的计算模式,倡导一切皆服务.云计算由于能够共享分布在世界各地的计算资源,在大规模计算和数据存储中越来越受到重视.云计算是当前IT工业界、学术界研究的热点领域,云环境中的资源可用性已成为云计算不可忽视的问题.对于云计算,当处理器的处理速度不同,不是一直可用于计算时,可用性成为设计和发展云计算系统的关键需求.根据并行任务图及树形云平台的结构特点,分别讨论了影响并行任务可用性需求和计算资源可用性保障的关键因素,给出一种可用性的量化计算公式.并且通过感知任务“可用性需求”和计算资源“可用性保障”,实现可用性匹配,提出了两种可用性感知的调度算法Afsa和Agsa.模拟实验表明该算法能够改善云环境中资源可用性和可靠性,对提高任务调度的成功率具有实际意义. 相似文献
13.
14.
An Effective Cloud Workflow Scheduling Approach Combining PSO and Idle Time Slot-Aware Rules 下载免费PDF全文
Workflow scheduling is a key issue and remains a challenging problem in cloud computing.Faced with the large number of virtual machine(VM)types offered by cloud providers,cloud users need to choose the most appropriate VM type for each task.Multiple task scheduling sequences exist in a workflow application.Different task scheduling sequences have a significant impact on the scheduling performance.It is not easy to determine the most appropriate set of VM types for tasks and the best task scheduling sequence.Besides,the idle time slots on VM instances should be used fully to increase resources'utilization and save the execution cost of a workflow.This paper considers these three aspects simultaneously and proposes a cloud workflow scheduling approach which combines particle swarm optimization(PSO)and idle time slot-aware rules,to minimize the execution cost of a workflow application under a deadline constraint.A new particle encoding is devised to represent the VM type required by each task and the scheduling sequence of tasks.An idle time slot-aware decoding procedure is proposed to decode a particle into a scheduling solution.To handle tasks'invalid priorities caused by the randomness of PSO,a repair method is used to repair those priorities to produce valid task scheduling sequences.The proposed approach is compared with state-of-the-art cloud workflow scheduling algorithms.Experiments show that the proposed approach outperforms the comparative algorithms in terms of both of the execution cost and the success rate in meeting the deadline. 相似文献
15.
为了更好地满足云计算中用户的服务质量(Quality of Service, QoS)需求,合理利用云数据中心的资源,以任务的执行时间和虚拟机的负载均衡作为优化的目标对象,提出了一种基于烟花算法(Fireworks Algorithm, FWA)的多目标优化调度模型。烟花算法是一种启发式算法,利用爆炸算子、高斯变异和选择策略能较快地寻找到全局最优解。通过在Cloudsim上与粒子群优化算法(PSO)和遗传算法(GA)进行有效性和执行时间上的对比,结果表明烟花算法在不同实验次数下可持续得到最优适应度值,而且在种群规模不断扩大时,烟花算法的执行时间没有陡然增加,明显优于PSO算法和GA算法。 相似文献
16.
云计算可以通过即付即用的方式向用户工作流提供资源。为了解决资源服务代价异构环境下的云工作流任务调度代价问题,提出一种基于改进粒子群算法的云工作流任务调度算法WSA-IPSO。通过综合考虑任务的执行代价和依赖任务间发生数据传输时的通信代价,算法将总代价优化问题形式化为有向无环图DAG中的任务调度模型,并提出基于改进粒子群算法的优化模型对其进行求解。通过改进传统粒子群算法的粒子速度更新策略和惯性权重更新策略,算法可以以更快的收敛速度得到代价最小化的调度方案。通过仿真实验,与MCT算法及标准粒子群算法进行性能比较。实验结果表明,WSA-IPSO算法在降低总代价、任务分布的负载均衡以及算法收敛性方面比较同类算法均表现出更好的性能。 相似文献
17.
为了满足云环境中用户任务调度的不同需求,提出一种改进粒子群算法的任务调度策略。将用户对时间和费用的期望值作为动态适应度函数的加权值,同时在粒子群算法中引入遗传算法的交叉和变异操作,不仅避免了算法陷入局部最优还保持解的多样性,最终求出满足用户需求的任务调度。仿真实验结果表明,该策略能够减低任务的完成时间和执行费用,提高云计算服务质量,具有良好的实用性。 相似文献
18.
随着应用程序计算需求的快速增长,异构计算资源不断地增多,任务调度成为云计算领域中重要的研究问题。任务调度负责将用户任务匹配给合适的虚拟计算资源,算法的优劣将直接影响响应时间、最大完工时间、能耗、成本、资源利用率等一系列与用户和云服务供应商经济利益密切相关的性能指标大小。针对独立任务和科学工作流这两类云环境主流任务,结合不同云环境特征对任务调度算法研究进展进行综述和讨论。回顾梳理已有的任务调度类型、调度机制及其优缺点;归纳单云环境和混合云、多云及联盟云等跨云环境下任务调度特征,并对部分相关典型文献的使用方法、优化目标、优缺点等方面进行阐述,在此基础上讨论各个环境下任务调度研究现状;进一步对各类环境下文献使用的调度优化方法进行梳理,明确其使用范围;总结并指出需要对计算数据密集型应用在跨云环境下的任务调度研究进行重点关注。 相似文献
19.
针对蚁群算法在云计算任务调度问题求解过程存在的不足,以找到最佳的云计算任务调度方案为目标,提出了一种基于改进蚁群算法的云计算任务调度方法.首先对当前云计算任务调度研究现状进行分析,并对问题进行了具体描述,然后采用蚁群算法对云计算任务调度问题进行求解,并针对标准蚁群算法缺陷进行改进,最后在CloudSim平台对该方法的性能进行测试.结果表明,改进蚁群算法可以找到较好的云计算任务问题调度方案,加快云计算任务完成速度,具有一定的实际应用价值. 相似文献