首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate an ideal container material for the triple point of water (TPW) cell and to reduce the influence to the triple-point temperature, due to the deviation of the isotopic composition of the water, both borosilicate and fused-quartz glass shelled TPW cells with isotopic composition substantially matching that of Vienna Standard Mean Ocean Water (VSMOW) were developed and tested. Through a specially designed manufacturing system, the isotopic composition, δD and δ18 O, of the water in the TPW cell could be controlled within ±10‰ (per mil) and ±1.5‰, respectively, resulting in control of the isotopic temperature correction to better than ± 8 μK. Through an ampoule attached to the cell, the isotopic composition of the water in the cell could be individually analyzed . After manufacture, the initial triple-point temperatures of the two types of cell were measured and compared to assess the quality of the cells and manufacturing process. Cells fabricated with the new system agree within 50 μK. Two innovatively designed borosilicate and fused-quartz TPW cells were made, each with six attached ampoules. One ampoule was removed every 6 months to track any changes in purity of the water over time.  相似文献   

2.
Isotopic analysis of the water used in KRISS triple point of water (TPW) cells was performed by three separate laboratories. The δD and δ 18O isotopic composition of six ampoules, made from two TPW cells, were analyzed by isotope ratio mass spectrometers. The analysis data showed that δD and δ 18O were − 62.17‰ and − 9.41‰ for the KRISS-2002-Jan cell, and − 36.42‰ and − 4.08‰ for the KRISS-2005-Jun cell. The temperature deviation of the triple point of water for these cells calculated from Kiyosawa’s data and the definition of the TPW were + 45.07μK for the KRISS-2002-Jan cell, and + 25.49μK for the KRISS-2005-Jun cell. The KRISS TPW temperature was + 92μK higher than the CCT-K7 KCRV after correcting for the deviation of the isotopic composition from Vienna Standard Mean Ocean Water.  相似文献   

3.
水三相点的高精度复现及准确测量是保证国际温标ITS-90实施的关键。水三相点容器内高纯水的同位素组成会影响复现的水三相点温度值。为了提高水三相点复现水平,减小氢氧同位素的影响,研制了带有氢氧同位素分析的石英及硼硅玻璃高准确度水三相点容器。为了评价容器的性能,开展了硼硅玻璃和石英水三相点容器的比对。实验结果表明:同位素修正前,石英玻璃和硼硅玻璃水三相点容器复现的水三相点在0.058mK范围内一致;同位素修正之后,容器之间的差异在0.017mK范围内一致。采用高准确度水三相点容器复现水三相点的扩展不确定度为0.066mK(k=2)。  相似文献   

4.
The definition of the kelvin is based on the triple-point temperature of highly pure water having the isotopic composition of ocean water (more specifically, the isotopic composition is equivalent to that of VSMOW). Belgian national metrology realizes the triple point of water (TPW) as the mean of temperatures measured in three sealed cells. In order to take into account the isotopic composition effect on TPW temperature, the ensemble of cells was replaced in 2006. Three new cells, with isotopic analysis of the contained water, were bought from different manufacturers. The new group of cells was compared to the old TPW national realization in order to quantify the effect of moving towards a new reference. Two different standard thermometers were used in all the cells to take 10 daily measurements on two different ice mantles. The measured resistances were corrected for hydrostatic head, self-heating, and isotopic composition (when available) before calculating the difference. A difference of about 87 μK was found between the old and the new national references. This difference is transferred to customers’ thermometers and cells through calibrations, and the change has to be documented in each new calibration certificate. An additional consequence of the new ensemble cell implementation is the significant reduction in the spread of deviations of individual cells from the mean temperature. The maximum difference between two cells of the ensemble is 96 μK for the old reference cells and 46 μK for the new reference cells corrected for isotopic composition effects.  相似文献   

5.
A miniature metallic cell for the water triple point (TPW, temperature 273.16 K) was developed for capsule-type thermometer calibrations for realizations with adiabatic calorimetry techniques. The LNE-INM/Cnam previously developed a copper cell for the water triple point and the techniques for cleaning, filling, and sealing. On the basis of previous work, a new copper cell prototype for the TPW was developed and filled at the LNE-INM/Cnam. Measurements were performed using an appropriate calorimeter and a comparison block containing several thermometers. Preliminary results show a scatter of the temperatures measured at the phase transition of the order of 0.2 mK when measurements are repeated over a short-term period (1 month). A positive drift in the phase transition temperature of about 30μK·month−1 was observed over several months. Studies are in progress to improve the cell, to reduce the reproducibility uncertainty to less than 0.1 mK and to have a phase transition with better temporal stability.  相似文献   

6.
邱萍  闫小克  汪洪军  王宁  刘薇  梁俣 《计量学报》2022,43(2):196-200
水三相点是ITS-90国际温标中最重要的定义固定点,其复现不确定度是传递到整个温标的.目前,通常采用不同的冻制方法在硼硅玻璃或石英水三相点容器内冻制均匀的冰套来复现水三相点.冻制过程中,由于在水三相点容器内生成冰桥,会造成容器的破裂.为了解决此难题,研制了金属外壳水三相点容器,利用高纯水自发相变原理,在液体槽内自动冻制...  相似文献   

7.
As the triple point of water is of great importance for the International Temperature Scale of 1990 (ITS-90) and for the definition of the unit of thermodynamic temperature, its long-term stability has attracted a great deal of attention. In a study of long-term stability, a mystery has been uncovered. Some triple-point-of-water cells remain stable for many decades, while others decrease with increasing age of the cells, which is called long-term drift. To investigate this mystery, we used cells with different manufacture dates ranging from 1974 to 2002 and compared their analyses, which were done in 1984 and 2003. Using the same model of long-term drift as that used by Hill, the long-term drift rates of the two data sets are –4.7 μK·year−1 and –9.2 μK·year−1, respectively. One is consistent with the observed depression of about –4 μK·year−1 measured by Hill, whereas the other differs greatly from Hill’s result. In addition, corresponding factors influencing long-term drift are discussed in this paper.  相似文献   

8.
The twenty-one participating laboratories in the international key comparison of water-triple-point cells (CCT-K7) can be classified into three groups: two laboratories that corrected the effect of the isotopic composition of water, four laboratories that had information on the isotopic composition but did not correct the effect, and the remaining laboratories that had no information. There were significant differences in the realized national standard for the triple point of water (TPW) between those laboratories that applied the isotopic correction and those that did not. The isotopic correction is now considered essential for the triple point of water. Since the National Metrology Institute of Japan (NMIJ) did not apply the isotopic correction and estimated large uncertainties at the time of the CCT-K7 comparison, we subsequently developed new cells for the TPW to improve the reliability and to reduce the uncertainty of the realization as a national reference. The isotopic compositions of seven cells were analyzed, and a chemical impurity analysis of one cell was performed. The good consistency among seven cells was shown in the results obtained when the isotopic correction was applied to the realized temperatures measured experimentally. The expanded uncertainty of the new national reference of NMIJ is estimated to be 49 μK (k = 2), and as a result of this improvement, the expanded uncertainty for calibrating a water-triple-point cell is 80 μK. The previous reference of NMIJ, reported in CCT-K7 to have an expanded uncertainty of 302 μK, is 42 μK lower than the new one. The new reference value is within the uncertainty of the previous national reference, and the new uncertainty is completely covered by the previous uncertainty. Furthermore, the new reference of NMIJ shows good agreement with the national references of the six laboratories able to apply isotopic corrects to their results for CCT-K7. These facts confirm the validity and the linkage to the CCT-K7 of both the previous and the new national references of NMIJ.  相似文献   

9.
An investigation into the effects of isotopic composition on the triple point temperature of water has been carried out at the National Institute of Metrology (NIM), China, since redefinition of the kelvin with respect to Vienna Standard Mean Ocean Water (V-SMOW) was officially proposed by the Consultative Committee for Thermometry (CCT) in 2005. In this paper, a comparison of four cells with isotopic analyses and relevant results corrected for isotopic composition, employing the isotope correction algorithm recommended by the CCT, is described. The results indicate that, after application of the corrections, the maximum temperature difference between the cells drops from 0.10 mK to 0.02 mK and that these cells are in good agreement within 0.02 mK. Also, temperature deviations arising from isotopic variations fall in the range from −55.9 μK to + 40.7 μK. We consider that the distillation temperature and degassing time of the production procedure lead to isotopic variations.  相似文献   

10.
CCT-K7水三相点容器国际关键比对   总被引:1,自引:1,他引:0  
在国际互认框架内,国家计量标准的国际等效性是通过国际计量委员会(CIPM)的咨询委员会组织的一系列国际关键比对来确定的。温度咨询委员会(CCT)委托国际计量局(BIPM)作为主导实验室组织了由20个国家实验室参加的CCT-K7水三相点容器国际关键比对。比对结果表明:这些国家基准水三相点值在0.171mK范围内一致。此外,为了减小国家实验室复现水三相点的系统差,需要进一步研究同位素组成对水三相点温度的影响以及同位素修正。  相似文献   

11.
Three comparisons of different triple-point-of-water (TPW) realizations in Europe have been organized under the auspices of EUROMET (EUROMET Projects 278, 549, and 714). Thirty European national metrology institutes were involved in these three comparisons that took place from 1994 to 2005. The aim of these successive projects was to assess the uncertainties associated with the practical realization of the triple point of water in Europe. Fifty-four TPW local cells were compared to a traveling standard cell (ref 679) circulated with an isothermal enclosure. The same equipment was used for the three projects, and LNE-INM regularly checked the stability of the TPW standard cell. Recently, LNE-INM has devoted efforts to bring the French standard at the triple point of water into close agreement with CIPM Recommendation 2 (CI-2005). The isotopic fractionation between water and ice when the cell is in use was experimentally studied. Several new TPW cells delivered by the manufacturer with water samples were added to our batch of reference cells. A French laboratory analyzed the isotopic compositions of these samples. These actions allow the French national definition of temperature at the triple point of water to be changed. A new temperature was associated with TPW cell 679 in agreement with the CIPM recommendation. In this presentation, the latest TPW cell measurements carried out by LNE-INM are presented. The results from EUROMET Projects 278, 549, and 714 are investigated in light of these changes.  相似文献   

12.
The effect of long-term natural variations in the isotopic composition on the temperature of the reproduction of the triple point of water – the main reference point of the ITS-90 International Temperature Scale – is investigated. Translated from Izmeritel’naya Tekhnika, No. 12, pp. 31–33, December, 2008.  相似文献   

13.
The “Centro Español de Metrología” is carrying out a project to improve the knowledge of the influence of impurities and isotopic composition on the temperature of the mercury triple point. High-purity mercury from the Almaden mine (stated purity of 99.9998%) was further purified by vacuum distillation. Three mercury fractions, the original mercury from Almaden and two distilled fractions, were characterized in terms of both impurities and isotopic composition and used to measure the mercury triple point. The original mercury sample contained silver at 560 ng · g?1 as the main impurity while the impurity levels were much lower (silver < 1 ng · g?1) in the two distilled fractions. The isotopic composition of the distilled fractions showed delta values, expressed as $1,000\times(^{198/202}{\rm Hg}_{\rm sample}-^{198/202}\,{\rm Hg}_{\rm reference})/^{198/202}{\rm Hg}_{\rm reference}The “Centro Espa?ol de Metrología” is carrying out a project to improve the knowledge of the influence of impurities and isotopic composition on the temperature of the mercury triple point. High-purity mercury from the Almaden mine (stated purity of 99.9998%) was further purified by vacuum distillation. Three mercury fractions, the original mercury from Almaden and two distilled fractions, were characterized in terms of both impurities and isotopic composition and used to measure the mercury triple point. The original mercury sample contained silver at 560 ng · g−1 as the main impurity while the impurity levels were much lower (silver < 1 ng · g−1) in the two distilled fractions. The isotopic composition of the distilled fractions showed delta values, expressed as , of 1.37±0.07 (1σ) for the first distilled sample and −1.55±0.03 (1σ) for the second distilled sample with reference to the original Almaden mercury. For the measurement of the mercury triple point, an alcohol stirred bath was used that allowed two cells to be compared nearly simultaneously. It was observed that the presence of the silver impurities in the high-purity mercury modified slightly the mercury triple point while the effect of variations in the isotopic composition can be considered negligible.  相似文献   

14.
A comparison of NMIA’s new water-triple-point (WTP) ensemble with a previously established ensemble is reported. Until 2007, the kelvin in Australia was defined as the average of an ensemble of WTP cells that were selected for stability and purity and collected over a period of several years from a variety of sources. As a result of the recent CCT-K7 comparison, a clarification of the SI definition for the kelvin was adopted, explicitly specifying the isotopic composition of the water in WTP cells. Although NMIA’s results were within the estimated uncertainties, NMIA initiated a project to acquire cells with isotope information from several manufacturers and batches to establish a new ensemble. We find that the standard deviation of the isotope-shift-corrected temperatures of five cells from three manufacturers to be 6 μK, which is significantly lower than that of the cells in the previous ensemble, which was 24 μK. The average temperature of the new ensemble is found to be approximately 107 μK higher than that of the previous ensemble. This difference is consistent with the findings of CCT-K7, which identified a group of laboratories controlling isotope effects, and is displaced 73 μK from the mean of the other laboratories.  相似文献   

15.
为了研究水源对水三相点温度的影响,采用4种不同的水源并按照相同的制作工艺研制高质量的水三相点容器.同时,将这些容器进行了比对实验.比对结果表明:这些不同水源的水三相点容器复现的水三相点值在±0.02 mK范围内一致.故推断出水源对水三相点温度的影响很小.  相似文献   

16.
A new Ag+ ion conducting composite electrolyte system (1−x)[0·75 AgI: 0·25 AgCl]:xSnO2 using a quenched/annealed [0·75 AgI: 0·25 AgCl] as host compound in place of conventional host AgI, has been investigated. The effects of various preparation methods and soaking time are reported. The composition 0·8[0·75 Agl: 0·25 AgCl]:0·2SnO2 exhibited optimum conductivity (σ = 8·4 × 10−4S/cm) with conductivity enhancement of ∼ 101 from the annealed host at room temperature. Transport property studies such as electrical conductivity (σ) as a function of temperature using impedance spectroscopy technique, ionic transference number (t ion) using Wagner’s d.c. polarization method and ionic mobility (μ) by transient ionic current technique were carried out on the optimum conducting composition. The mobile ion concentration (n) was calculated from ‘σ’ and ‘μ’ data.  相似文献   

17.
A new version of a vibrating tube flow densitometer has been designed permitting measurements of density differences between two fluids in the temperature range from 298 to 723 K and at pressures up to 40 MPa. The instrument is equipped with a Pt/Rh20 vibrating tube (1.6-mm o.d.) and a Pt/Rh10 transporting tube (1.2-mm o.d.) permitting measurements with highly corrosive liquids. The period of oscillation of the tube is about 7.5 ms, with a typical stability better than 10−4% over about a 1-h period over the entire temperature interval. The calibration constantK at room temperature is about 530 kg·m−3·ms−2, with a temperature coefficient of approximately −0.13kg·m−3·ms−2·K−1, and is practically pressure independent. It can be determined by calibration with a reproducibility generally better than 0.1%. The instrument was tested with NaCl(aq) solutions in the temperature range from 373 to 690 K for density differences between sample and reference liquid ranging from 200 to 2 kg·m−3; the corresponding errors are believed to be below 0.3 and 5%, respectively. A highly automated temperature control maintains the temperature of the tube stable to within ±0.02 K.  相似文献   

18.
Contamination of triple-point-of-water (TPW) cells by the chemical components of the borosilicate glass that contains the water is now widely recognized as the principal contributor to long-term drift of the cell temperature. To add to the available experimental data, a comparison of 24 TPW cells of various ages (from 10 years to 59 years), manufacturers (NRC, Jarrett, Isotech), and materials (borosilicate glass and fused quartz) was undertaken in 2013. Twelve cells from this group were compared to one another in 1997. By comparing the current inter-cell temperature differences to those determined 16 years earlier, it was found that some cells have remained stable, others have become colder (as might be expected from ongoing dissolution of the glass), and one or two show an apparent increase in temperature that seems anomalous. Also included among the 24 cells are five cells of borosilicate glass and five of fused quartz that were purchased 10 years ago. By comparing the relative temperature differences among this group of borosilcate and fused-quartz-encapsulated cells to the values obtained when they were last compared 6 years ago, it was found that the average temperature of the borosilcate group of cells decreases by \(-6\,\upmu \mathrm{K}\,{\cdot }\,\mathrm{year}^{-1}\,({\pm }2\,\upmu \mathrm{K}\,{\cdot }\,\mathrm{year}^{-1})\) , in reasonable agreement with an average drift of \(-4\,\upmu \mathrm{K}\,{\cdot }\,\mathrm{year}^{-1}\) suggested 12 years ago. It was concluded that fused quartz is the superior container for TPW cells.  相似文献   

19.
A Johnson-noise thermometer (JNT) has been used with a quantized voltage noise source (QVNS), as a calculable reference to determine the ratio of temperatures near the Zn freezing point to those near the Sn freezing point. The temperatures are derived in a series of separate measurements comparing the synthesized noise power from the QVNS with that of Johnson noise from a known resistance. The synthesized noise power is digitally programed to match the thermal noise powers at both temperatures and provides the principle means of scaling the temperatures. This produces a relatively flat spectrum for the ratio of spectral noise densities, which is close to unity in the low-frequency limit. The data are analyzed as relative spectral ratios over the 4.8 to 450 kHz range averaged over a 3.2 kHz bandwidth. A three-parameter model is used to account for differences in time constants that are inherently temperature dependent. A drift effect of approximately −6 μK·K−1 per day is observed in the results, and an empirical correction is applied to yield a relative difference in temperature ratios of −11.5 ± 43 μK·K−1 with respect to the ratio of temperatures assigned on the International Temperature Scale of 1990 (ITS-90). When these noise thermometry results are combined with results from acoustic gas thermometry at temperatures near the Sn freezing point, a value of TT 90 = 7 ± 30 mK for the Zn freezing point is derived.  相似文献   

20.
The thermal diffusivity of a simulated fuel with fission products forming a solid solution was measured using the laser-flash method in the temperature range from room temperature to 1673 K. The density and the grain size of the simulated fuel with the solid solutions used in the measurement were 10.49 g · cm−3 (96.9% of theoretical density) at room temperature and 9.5 μm, respectively. The diameter and thickness of the specimens were 10 and 1 mm, respectively. The thermal diffusivity decreased from 2.108 m2 · s−1 at room temperature to 0.626 m2 · s−1 at 1673 K. The thermal conductivity was calculated by combining the thermal diffusivity with the specific heat and density. The thermal conductivity of the simulated fuel with the dissolved fission products decreased from 4.973 W · m−1 · K−1 at 300 K to 2.02 W · m−1 · K−1 at 1673 K. The thermal conductivity of the simulated fuel was lower than that of UO2 by 34.36% at 300 K and by 15.05% at 1673 K. The difference in the thermal conductivity between the simulated fuel and UO2 was large at room temperature, and decreased with an increase in temperature. Paper presented at the Seventeenth European Conference on Thermophysical Properties, September 5–8, 2005, Bratislava, Slovak Republic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号