首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A mathematical apparatus is developed for the analysis of the three-dimensional stress–strain state with small deflections of laminated orthotropic plates of any thickness and non-symmetrical layer structure through the thickness. This theory is based on the representation of the displacement vector in terms of products of the given functions in the direction of the axes x1, x2 and the unknown functions over the axis x3. Both the real and complex roots of the characteristic equation describing the representation of the sought functions through the thickness of the plate are taken into account. Such an approach allows us to expand the scope of physical and mechanical relationships among the material characteristics.  相似文献   

3.
This article presents the buckling analysis of isotropic nanoplates using the two variable refined plate theory and nonlocal small scale effects. The two variable refined plate theory takes account of transverse shear effects and parabolic distribution of the transverse shear strains through the thickness of the plate, hence it is unnecessary to use shear correction factors. Nonlocal governing equations of motion for the nanoplate are derived from the principle of virtual displacements. The closed-form solution for buckling load of a simply supported rectangular nanoplate subjected to in-plane loading has been obtained by using the Navier’s method. Numerical results obtained by the present theory are compared with available exact solutions in the literature. The effect of nonlocal scaling parameter, mode numbers and aspect ratios of the nanoplates on buckling load are investigated and discussed in detail in the present work. It can be concluded that the present theory, which does not require shear correction factor, is not only simple but also comparable to the first-order and higher order shear deformable theory.  相似文献   

4.
This article presents the buckling analysis of orthotropic nanoplates such as graphene using the two-variable refined plate theory and nonlocal small-scale effects. The two-variable refined plate theory takes account of transverse shear effects and parabolic distribution of the transverse shear strains through the thickness of the plate, hence it is unnecessary to use shear correction factors. Nonlocal governing equations of motion for the monolayer graphene are derived from the principle of virtual displacements. The closed-form solution for buckling load of a simply supported rectangular orthotropic nanoplate subjected to in-plane loading has been obtained by using the Navier’s method. Numerical results obtained by the present theory are compared with first-order shear deformation theory for various shear correction factors. It has been proven that the nondimensional buckling load of the orthotropic nanoplate is always smaller than that of the isotropic nanoplate. It is also shown that small-scale effects contribute significantly to the mechanical behavior of orthotropic graphene sheets and cannot be neglected. Further, buckling load decreases with the increase of the nonlocal scale parameter value. The effects of the mode number, compression ratio and aspect ratio on the buckling load of the orthotropic nanoplate are also captured and discussed in detail. The results presented in this work may provide useful guidance for design and development of orthotropic graphene based nanodevices that make use of the buckling properties of orthotropic nanoplates.  相似文献   

5.
This work presents the buckling analysis of laminated composite thin walled structures by the 1D finite element based unified higher-order models obtained within the framework of the Carrera Unified Formulation (CUF). In the present study, the refined beam theories are obtained on the basis of Taylor-type expansions. The finite element analysis has been chosen to easily handle arbitrary geometries as well as boundary conditions. Buckling behavior of laminated composite beam and flat panels are analyzed to illustrate the efficacy of the present formulation and various types of buckling modes are observed depending on the geometrical and material parameters. It is observed that the lower order models are unable to deal with torsion.  相似文献   

6.
A refined plate theory for functionally graded plates resting on elastic foundation is developed in this paper. The theory accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The number of independent unknowns of present theory is four, as against five in other shear deformation theories. The material properties of plate are assumed to vary according to power law distribution of the volume fraction of the constituents. The elastic foundation is modeled as two-parameter Pasternak foundation. Equations of motion are derived using Hamilton’s principle. The closed-form solutions of rectangular plates are obtained. Numerical results are presented to verify the accuracy of present theory.  相似文献   

7.
The explicit closed-form local buckling solution of in-plane shear-loaded orthotropic plates with two opposite edges simply supported and other two opposite edges either both rotationally restrained or one rotationally restrained and the other free is presented. Based on the boundary condition of the other two opposite edges, two types of plates are considered: the RR (both the edges rotationally restrained) and RF (one edge restrained and the other free) plate elements. Different plate buckled shape functions are proposed, and the approximate explicit expressions for the buckling loads are derived using the Rayleigh–Ritz method for the plate with the generic rotationally-restrained (R) boundary conditions which can be reduced to two extreme cases, i.e., simply supported (S) and clamped (C). The accuracy of the derived explicit solutions is verified by comparing the predictions with the existing solutions and numerical finite element analysis, and excellent agreements are obtained. The effects of material and boundary restraining parameters on the local shear buckling behavior of the plate elements are discussed. The derived explicit formulas for the shear buckling loads are straightforward, efficient and reliable for preliminary engineering design and analysis of composite structures under primarily shear-dominant loading conditions.  相似文献   

8.
The vibration responses of orthotropic plates on nonlinear elastic foundations are numerically modeled using the differential quadrature method. The differential quadrature technique is utilized to transform partial differential equations into a discrete eigenvalue problem. Numerical results and those from literature closely correspond to each other. Numerical results demonstrate that elastically restrained stiffness, plate aspect ratio and foundation stiffness significantly impact the dynamic behavior of orthotropic plates.  相似文献   

9.
This article, based on first-order shear deformation theory, presents the buckling analysis of a rotationally restrained orthotropic rectangular Mindlin plate resting on a Pasternak elastic foundation. Thus, the Mindlin–Reissner plate theory is employed for which the governing equations are solved by the Rayleigh–Ritz method. Uniformly distributed in-plane loads are applied to two simply supported opposite edges of the plate and the other two edges have rotationally restrained conditions without loading. Finally, the effects of plate parameters, such as foundation stiffness coefficients, aspect ratios, and ratio of elastic modulus in the x to y direction on the buckling loads are presented. The results show that the buckling load would increase when the ratio of the elastic modulus in the x to y direction increases and the plate is close to isotropic. The variation of buckling load versus changing ratio of elastic modulus in the x to y direction in the state of without elastic foundation and with clamp support is more than the rest of the state.  相似文献   

10.
In this article, a new five-variable refined plate theory for the free vibration analysis of functionally graded sandwich plates is developed. By dividing the transverse displacement into bending, shear, and thickness stretching parts, the number of unknowns and governing equations of the present theory is reduced, and hence, makes it simple to use. Indeed, the number of unknown functions involved in the present theory is only five, as opposed to six or more in the case of other shear and normal deformation theories. The theory accounts for hyperbolic distribution of the transverse shear strains, and satisfies the zero traction boundary conditions on the surfaces of the plate without using a shear correction factor. Two common types of functionally graded material (FGM) sandwich plates, namely, the sandwich with FGM facesheet and homogeneous core and the sandwich with homogeneous facesheet and FGM core, are considered. The equations of motion are obtained using Hamilton's principle. Numerical results of the present theory are compared with three-dimensional elasticity solutions and other higher-order theories reported in the literature. It can be concluded that the proposed theory is accurate and efficient in predicting the free-vibration response of functionally graded sandwich plates.  相似文献   

11.
Accurate free-vibrations and linearized buckling analysis of anisotropic laminated plates with different lamination schemes and simply supported boundary condition are addressed in this paper. Approximation methods, such as Rayleigh-Ritz, Galerkin and Generalized Galerkin, based on Principle of Virtual Displacement are derived in the framework of Carrera’s Unified Formulation (CUF). CUF widely used in the analysis of composite laminate beams, plates and shells, have been here formulated both for the same and different expansion orders, for the displacement components, in the thickness layer-plate direction. An extensive assessment of advanced and refined plate theories, which include Equivalent single Layer (ESL), Zig-Zag (ZZ) and Layer-wise (LW) models, with increasing number of displacement variables is provided. Accuracy of the results is shown to increase by refining the theories. Convergence studies are made in order to demonstrate that accurate results are obtained examining thin and thick plates using trigonometric approximation functions. The effects of boundary terms, upon frequency parameters and critical loads are evaluated. The effects of the various parameters (material, number of layers, fiber orientation, thickness ratio, orthotropic ratio) upon the frequencies and critical loads are discussed as well. Numerical results are compared with 3D exact solution when available from the open literature.  相似文献   

12.
The onset of buckling in square laminated multi-layered composite plates, subject to unidirectional in-plane loads, is investigated within the framework of a generalized higher-order shear deformation theory suitable to capture significant transverse shear and thickness-wise deformation effects. The displacement field is expanded in a Taylor series of the thickness coordinate with arbitrary polynomial degree; in turn, the series coefficients, expressed as a superposition of admissible functions, are determined according to the Rayleigh–Ritz method. Truly higher-order polynomial terms, along with a sufficient number of in-plane admissible functions, are shown to be necessary for convergence towards the fundamental buckling load multiplier. As a by-product, reduced-order models are identified for various plate geometries and lamination schemes. The sensitivity of the lowest buckling load with respect to the nondimensional parameters (the thickness ratio, the ratio between the elastic moduli, the ply angle) is investigated. In particular, the attention is focused on the cross-over phenomenon between the lowest two buckling eigenvalues in multi-layered composite square plates with different lamination schemes. The presented results shed light onto the buckling behavior of thick shear-deformable multi-layered plates.  相似文献   

13.
Solution of the buckling problem for the CCFF orthotropic plate subjected to in-plane pure bending is presented. The two parallel clamped edges of the plate are loaded by linearly distributed in-plane loads statically equivalent to the in-plane bending moments. The problem is solved using method of lines for partial differential equations and Galerkin’s method. The buckling problems are solved for isotropic, orthotropic and multilayered CFRP composite plates with various aspect ratios. Results of calculations of critical loads are compared with those based on finite-element modelling and analyses. The comparisons demonstrate efficiency of the proposed approach to the buckling analysis of composite CCFF plates with various dimensional and stiffness parameters.  相似文献   

14.
A new higher-order theory for the analysis of laminated orthotropic plates and shells subject to both mechanical and thermal loads is developed. Using the variational approach the system of governing differential equations and corresponding boundary conditions are derived. Two refined models of the stress and strain state are considered, their application and accuracy are discussed. The analytical solution is obtained for plates and shells with the Navier boundary conditions on the side surfaces. The results of calculations are given and compared with an exact three-dimensional solution available in the literature. The influence of the laminated structure upon the exactness of results and the characteristics of stress–strain state is studied and discussed.  相似文献   

15.
A state of the art of the problem of buckling in sandwich structures is discussed and the shortcomings of some existing theories shown. A specified classification of the forms of stability is given and, in accordance with it, a refined theory for the study of the mixed forms of stability is formulated. Different models of the fillers are classified according to their stress–strain state. For the transversely soft model of the filler a set of geometrically nonlinear refined relations is derived. These relations are used to describe the subcritical instantaneous equilibrium of the sandwich plates in the case of both large and small changes in the shear stresses.  相似文献   

16.
S. Sahraee   《Composite Structures》2009,88(4):548-557
Based on the Levinson plate theory (LPT) and the first-order shear deformation plate theory (FST), the bending analysis of functionally graded (FG) thick circular sector plates is presented. The LPT solutions of FG sectorial plates are first expressed in terms of the solutions of the classical plate theory (CPT) for homogeneous sectorial plates and then presented using a direct method. It is assumed that the non-homogeneous mechanical properties of plate, graded through the thickness, are described by a power function of the thickness coordinate. The results are given in closed-form solutions and verified with the known data in the literature.  相似文献   

17.
Based on third-order shear deformation plate theory of Reddy, the authors aim to provide an exact analytical solution for free vibration analysis of thick circular/annular plates, both upper and lower surfaces of which are in contact with a piezoelectric layer. Natural frequencies are determined by the solution of the coupled electromechanical governing equations for a combination of free, soft simply supported, hard simply supported and clamped boundary conditions at the inner and outer edges of the plate. The electrodes on each piezoelectric layer are assumed to be short-circuited. The Maxwell electrostatics equation is satisfied by adopting a half-sine distribution of the electric potential in the transverse direction of the piezoelectric layers. A comparison of the present exact natural frequencies for piezoelectric coupled circular/annular plates with different boundary conditions is made with previously published results obtained by the Mindlin plate theory and 3-D modified finite element method. The effects of plate parameters such as host thickness to radius ratios, inner to outer radius ratios and piezoelectric to host thickness ratios on the natural frequencies of laminated circular/annular plates are investigated for different combinations of boundary conditions. Results obtained by the present exact closed-form solutions can be served as benchmark data for investigators to validate their numerical and analytical methods in the future.  相似文献   

18.
A Levy-type solution is presented for hybrid rectangular plates, with two opposite edges simply supported, made of a cross-ply composite laminate with attached piezoelectric layers, and subjected to thermoelectromechanical load. First-order shear deformation and classical lamination theories are used. A mixed formulation is employed for the solution. The effect of the width-to-depth ratio and aspect ratio on deflection and force resultants has been illustrated for a uniform load on plates with various boundary conditions. The effect of shear deformation on deflection and force resultants for moderately thick plates is generally more pronounced for the mechanical load case than for the self-straining cases of thermal and electric loads.  相似文献   

19.
A two-dimensional finite element model is presented to perform the linear static analysis of laminated orthotropic composite plates based on a refined higher order shear deformation theory. The theory accounts for parabolic distributions of transverse shear stresses and requires no shear correction factors. A finite element program is developed using serendipity element with seven degrees of freedom per node. The present solutions are compared with those obtained using three-dimensional elasticity theory and those obtained by other researchers. The theory accurately predicts displacements and transverse shear stresses compared to previously developed theories for thick plates and are very close to three-dimensional elasticity solutions. The effects of transverse shear deformation, material anisotropy, aspect ratio, fiber orientation and lamination sequence on transverse shear stresses are investigated. The error in values of transverse shear stresses decreases as the number of lamina increases, for a plate of same thickness. An increase in degree of anisotropy results in lower values of deflection in the plate. For cross-ply plate an increase in anisotropy results in an increase in effective stress whereas for angle-ply plate the effect is almost negligible. Through thickness variation of transverse shear stresses are independent of anisotropy. The maximum effective stress increases exponentially at lower values of anisotropy and reaches to an asymptotic value at higher values. The stacking sequence has a significant effect on the transverse deflections and shear stress. Rectangular plates experience less effective, in-plane and transverse shear stresses compared to square plates.  相似文献   

20.
A refined non-conforming triangular plate/shell element for linear and geometrically nonlinear analysis of plates and shells is developed in this paper based on the refined non-conforming element method (RNEM). A conforming triangle membrane element with drilling degrees of freedom in Cartesian coordinates and the refined non-conforming triangular plate-bending element RT9, in which Kirchhoff kinematic assumption was adopted, are used to construct the present element. The displacement continuity condition along the interelement boundary is satisfied in an average sense for plate analysis, and the coupled displacement continuity requirement at the interelement is satisfied in an average sense, thereby improving the performance of the element for shell analysis. Selectively reduced integration with stabilization scheme is employed in this paper to avoid membrane locking. Numerical examples demonstrate that the present element behaves quite satisfactorily either for the linear analysis of plate bending problems and plane problems or for the geometrically nonlinear analysis of thin plates and shells with large displacement, moderate rotation but small strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号