首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
This paper proposes a simple, efficient algorithm to trace a moving delamination front with an arbitrary and changing shape so that delamination growth can be analyzed by using stationary meshes. Based on the algorithm, a delamination front can be defined by two vectors that pass through any point on the front. The normal vector and the tangent vector for the local coordinate system can then be obtained based on the two delamination front vectors. An important feature of this approach is that it does not require the use of meshes that are orthogonal to the delaminations front. Therefore, the approach avoids adaptive re-meshing techniques that may create a large computational burden in delamination growth analysis. An interface element that can trace the instantaneous delamination front, determine the local coordinate system, approximate strain energy release rate components and apply fracture mechanics criteria has been developed and implemented into ABAQUS® with its user-defined element (UEL) feature. In this Part I of a two-part paper, the approach and its implementation are described and validated by comparison to results from existing cases having analytical solutions or other established FEA predictions.  相似文献   

2.
The interface element and VCCT process described in Part I of this two-part paper, developed to compute strain energy release rates of an arbitrary delamination front using non-orthogonal finite element meshes, are further investigated in this paper for robustness and ease of use in tracking delamination growth. Standard 3-D elements are used in conjunction with the interface elements. No special singularity elements are required. Stationary meshes that are independent of the shape of the delamination front can be used. Three cases having different initial delamination shapes are examined. The process is shown to be insensitive to the values used for the interfacial spring stiffness, the orientation of the interface element, or even the mesh pattern if the mesh has a reasonable degree of refinement. Therefore, the method can be used with ease and confidence in general-purpose delamination growth analysis for engineering applications.  相似文献   

3.
An interface element tailored for the virtual crack closure technique (VCCT) was used to study an example of dynamic crack propagation under mixed mode loading. Through this interfacial element approach, VCCT can be implemented into a commercial finite element analysis (FEA) code having user subroutines without interrupting the main code. Further, with the implementation of relevant fracture criteria, this interface element can be used to simulate a wide range of fracture problems by utilizing the enhanced capabilities available by the commercial FEA codes. For illustration, this element has been implemented with the commercial FEA software ABAQUS® through the user defined element (UEL). One example of fast crack propagation at constant speed and under mixed-mode loading was examined by comparison to the other’s numerical results using singular moving elements. No convergence difficulty was encountered for all the cases with different values of crack velocity. Neither singular element, nor the collapsed element was required. Therefore, due to its simplicity, the VCCT interface element as demonstrated could be a potential tool for engineers to practice dynamic fracture analysis in conjunction with commercial FEA codes.  相似文献   

4.
The role of mesh design in the post-buckling analysis of delamination in composite laminates is addressed in this paper. The determination of the strain energy release rate (SERR) along the crack front is central to the analysis. Frequently, theoretical analysis is limited to treatment of the problem in two dimensions, since considerable complexity is encountered in extending the analysis to three dimensions. However, many practical problems of embedded delamination in composite laminates are inherently three-dimensional in nature. Although in such cases, the finite element (FE) method can be employed, there are some issues that must be examined more closely to ensure physically realistic models. One of these issues is the effect of mesh design on the determination of the local SERR along the delamination front. There are few studies that deal with this aspect systematically. In this paper, the effect of mesh design in the calculation of SERR in two-dimensional (2D) and three-dimensional (3D) FE analyses of the post-buckling behavior of embedded delaminations is studied and some guidelines on mesh design are suggested. Two methods of calculation of the SERR are considered: the virtual crack closure technique (VCCT) and crack closure technique (CCT). The 2D analyses confirm that if the near-tip mesh is symmetric and consists of square elements, then the evaluation of the SERR is not sensitive to mesh refinement, and a reasonably coarse mesh is adequate. Despite agreement in the global post-buckling response of the delaminated part, the SERR calculated using different unsymmetrical near-tip meshes could be different. Therefore, unsymmetrical near-tip meshes should be avoided, as convergence of the SERR with mesh refinement could not be assured. While the results using VCCT and CCT for 2D analyses agree well with each other, these techniques yield different quantitative results when applied to 3D analyses. The reason may be due to the way in which the delamination growth is modeled. The CCT allows simultaneous delamination advance over finite circumferential lengths, but it is very difficult to implement and the results exhibit mesh dependency. Qualitatively, however, the two sets of results show similar distributions of Mode I and Mode II components of the SERR. This is fortunate, since the VCCT is relatively easy to implement.  相似文献   

5.
基于虚拟裂纹闭合技术的应变能释放率分析   总被引:2,自引:1,他引:2  
基于虚拟裂纹闭合技术(VCCT),建立了复合材料层合板层间裂纹尖端的应变能释放率(SERR)三维有限元计算模型。该模型考虑了裂纹尖端大转动和离散单元形状变化对应变能释放率计算的影响,修正了裂纹尖端应变能释放率的计算方法。利用该模型计算了裂纹长度为15 mm和35 mm时纯Ⅰ型和纯Ⅱ型的应变能释放率,纯Ⅰ型应变能释放率分别为 207 J/m2和 253 J/m2;纯Ⅱ型应变能释放率分别为 758 J / m 2和 1040 J / m2;计算值与试验值吻合得很好。同时,该模型计算了混合型不同比值 R=(G/G+G)的长裂纹层合板层间断裂过程的应变能释放率,其中Ⅰ型和Ⅱ型应变能释放率计算值与试验平均值的最大误差为 11.4%,最小误差为 0.4%。该模型能有效计算裂纹尖端的应变能释放率。  相似文献   

6.
The part-through semi-elliptical surface flaw is commonly encountered in engineering practice. Proper characterization of plasticity-induced crack closure is necessary to predict both flaw growth and flaw shape evolution under cyclic loading. Three-dimensional elastic-plastic finite element analyses are used to model the plasticity-induced closure developed along the surface flaw crack front, and the subsequent crack opening behavior under constant amplitude loading. Resulting crack opening stresses are compared with results from a strip-yield model and with experimentally measured values reported in the literature. It was found that the computed values were larger than those measured.  相似文献   

7.
In this paper, the extended finite element method (XFEM) is extended to simulate delamination problems in composite laminates. A crack-leading model is proposed and implemented in the ABAQUS® to discriminate different delamination morphologies, i.e., the 0°/0° interface in unidirectional laminates and the 0°/90° interface in multidirectional laminates, which accounts for both interlaminar and intralaminar crack propagation. Three typical delamination problems were simulated and verified. The results of single delamination in unidirectional laminates under pure mode I, mode II, and mixed mode I/II correspond well with the analytical solutions. The results of multiple delaminations in unidirectional laminates are in good agreement with experimental data. Finally, using a recently proposed test that characterizes the interaction of delamination and matrix cracks in cross-ply laminates, the present numerical results of the delamination migration caused by the coupled failure mechanisms are consistent with experimental observations.  相似文献   

8.
A three-dimensional (3D) finite element (FE) model is created with cohesive zone elements (CZE) to simulate a mechanically fastened [0°/90°]s pin-loaded joint in a composite laminate. The model incorporates fully integrated solid elements in the pin-loaded area to accurately capture the high stress gradients. Contact based cohesive elements with a bilinear traction–separation law are inserted between the layers to capture the onset and growth of delamination. The stress distribution around the pin-loaded hole was verified with the widely used cosine stress distribution model. Results from the FE model show that delamination damage initiated at the point of maximum average shear stress at the 0°/90° interface. The delaminated area develops an elliptical shape which grows in a non-self similar manner with increasing pin displacement. It is concluded that a progressive damage model should be included to provide a full understanding of the failure sequence, work that the authors are currently engaged with.  相似文献   

9.
In this paper, a multi-particle finite element [Nguyen VT, Caron JF. A new finite element for free edge effect analysis in laminated composites. Comput Struct, accepted for publication] is applied for general laminated and is shown to be capable of simultaneously predicting global and local responses. The analysis of free-edge stresses of composite laminates subjected to mechanical and thermal loads is performed using this CoCo eight-node layer-wise finite element after a classical bending validation. Laminates with finite dimensions are considered and three-dimensional out-of-plane stresses in the interior and near the free edges are evaluated. The results obtained with this finite element modelling are compared with those available in the literature. The present calculation provides accurate stresses and can be utilised as and operational tool to predict interlaminar stresses under the loads of mechanical and thermal combined.  相似文献   

10.
Dynamic delamination in curved composite laminates is investigated experimentally and numerically. The laminate is 12-ply graphite/epoxy woven fabric L-shaped laminate subject to quasi-static loading perpendicular to one arm. Delamination initiation and propagation are observed using high speed camera and load–displacement data is recorded. The quasi-static shear loading initiates delamination at the curved region which propagates faster than the shear wave speed of the material, leading to intersonic delamination in the arms. In the numerical part, the experiments are simulated with finite element analysis and a bilinear cohesive zone model. Cohesive interface elements are used between all plies with the interface properties obtained from tests. The simulations predict a single delamination initiating at the corner under pure mode-I stress field propagating to the arms under pure mode-II stress field. The crack tip speeds transition from sub-Rayleigh to intersonic in conjunction with mode change. In addition to intersonic mode-II delamination, shear Mach waves emanating from the crack tips in the arms are observed. The simulations and experiments are found to be in good agreement at the macro-scale, in terms of load-displacement behavior and failure load, and at the meso-scale, in terms of delamination initiation location and crack propagation speeds. Finally, a mode dependent crack tip definition is proposed and observation of vibrations during delamination is presented. This paper presents the first conclusive evidence of intersonic delamination in composite laminates triggered under quasi-static loading.  相似文献   

11.
The transition of delamination growth between different ply interfaces in composite tape laminates, known as migration, was investigated experimentally. The test method used promotes delamination growth initially along a 0/θ ply interface, which eventually migrates to a neighbouring θ/0 ply interface. Specimens with θ = 60° and 75° were tested. Migration occurs in two main stages: (1) the initial 0/θ interface delamination turns, transforming into intraply cracks that grow through the θ plies; this process occurs at multiple locations across the width of a specimen, (2) one or more of these cracks growing through the θ plies reaches and turns into the θ/0 ply interface, where it continues to grow as a delamination. A correlation was established between these experimental observations and the shear stress sign at the delamination front, obtained by finite element analyses.Overall, the experiments provide insight into the key mechanisms that govern delamination growth and migration.  相似文献   

12.
In this paper, a modified adaptive cohesive element is presented. The new elements are developed and implemented in LS-DYNA, as a user defined material subroutine (UMAT), to stabilize the finite element simulations of delamination propagation in composite laminates under transverse loads. In this model, a pre-softening zone is proposed ahead of the existing softening zone. In this pre-softening zone, the initial stiffness and the interface strength are gradually decreased. The onset displacement corresponding to the onset damage is not changed in the proposed model. In addition, the critical energy release rate of the materials is kept constant. Moreover, the constitutive equation of the new cohesive model is developed to be dependent on the opening velocity of the displacement jump. The traction based model includes a cohesive zone viscosity parameter (η) to vary the degree of rate dependence and to adjust the maximum traction. The numerical simulation results of DCB in Mode-I is presented to illustrate the validity of the new model. It is shown that the proposed model brings stable simulations, overcoming the numerical instability and can be widely used in quasi-static, dynamic and impact problems.  相似文献   

13.
We review, unify and extend work pertaining to evaluating mode mixity of interfacial fracture utilizing the virtual crack closure technique (VCCT). From the VCCT, components of the strain energy release rate (SERR) are obtained using the forces and displacements near the crack tip corresponding to the opening and sliding contributions. Unfortunately, these components depend on the crack extension size, Δ, used in the VCCT. It follows that a mode mixity based upon these components also will depend on the crack extension size. However, the components of the strain energy release rate can be used for determining the complex stress intensity factors (SIFs) and the associated mode mixity. In this study, we show that several—seemingly different—suggested methods presented in the literature used to obtain mode mixity based on the stress intensity factors are indeed identical. We also present an alternative, simpler quadratic equation to this end. Moreover, a Δ-independent strain energy release based mode mixity can be defined by introducing a “normalizing length parameter.” We show that when the reference length (used for the SIF-based mode mixity) and the normalizing length (used for Δ-independent SERR-based mode mixity) are equal, the two mode mixities are only shifted by a phase angle, depending on the bimaterial parameter ε.  相似文献   

14.
Plasticity-induced crack closure is an observed phenomenon during fatigue crack growth. However, accurate determination of fatigue crack closure has been a complex task for years. It has been approached by means of experimental and numerical methods. The finite element method (FEM) has been the principal numerical tool employed. In this paper the results of a broad study of fatigue crack closure in plane stress and plane strain by means of FEM are presented. The effect of three principal factors has been analysed in depth, the maximum load, the crack length and the stress ratio. It has been found that the results are independent of maximum load and the crack length, and there exists a direct influence of the stress ratio. This relation has been numerically correlated and compared with experimental results. Differences have also been established between opening and closure points and between the different criteria employed to compute crack closure.  相似文献   

15.
Progressive damage and failure in composites are generally complex and involve multiple interacting failure modes. Depending on factors such as lay-up sequence, loading and specimen configurations, failure may be dominated by extensive matrix crack-delamination interactions, which are very difficult to model accurately. The present study further develops an integrated extended finite element method (XFEM) and cohesive element (CE) method for three-dimensional (3D) delamination migration in multi-directional composite laminates, and validates the results with experiment performed on a double-cantilever beam (DCB). The plies are modeled by using XFEM brick elements, while the interfaces are modeled using CEs. The interaction between matrix crack and delamination is achieved by enriching the nodes of cohesive element. The mechanisms of matrix fracture and delamination migration are explained and discussed. Matrix crack initiation and propagation can be predicted and delamination migration is also observed in the results. The algorithm provides for the prediction of matrix crack angles through the ply thickness. The proposed method provides a platform for the realistic simulation of progressive failure of composite laminates.  相似文献   

16.
A finite element model for predicting delamination resistance of z-pin reinforced laminates under the mode-II load condition is presented. End notched flexure specimen is simulated using a cohesive zone model. The main difference of this approach to previously published cohesive zone models is that the individual bridging force exerted by z-pin is governed by a specific traction-separation law derived from a unit-cell model of single pin failure process, which is independent of the fracture toughness of the unreinforced laminate. Therefore, two separate traction-separation laws are employed; one represents unreinforced laminate properties and the other for the enhanced delamination toughness owing to the pin bridging action. This approach can account for the so-called large scale bridging effect and avoid using concentrated pin forces in numerical models, thus removing the mesh-size dependency and permitting more accurate and reliable computational solutions.  相似文献   

17.
Unidirectional fiber-reinforced composite laminates are widely used in aerospace industry for a great variety of structural parts. In order to enhance the exploitation of material reserves, there is a need for the integration of progressive damage scenarios in the design phase. Due to their hazardous effects on the load-carrying capacity of composite structures, this work focusses on the simulation of delaminations. A finite element based on a cohesive zone approach is developed. Two constitutive laws are proposed. One is characterized by linear degradation after delamination onset, the other is governed by exponential softening response. The damage process is history-dependent leading to an irreversible stiffness degradation in damaged zones. The practicability of the proposed model and the assets and drawbacks of the two material laws are shown by some numerical examples.  相似文献   

18.
Clamping force is a key element that alters the mechanism and sequence of failure in bolted joints of composite laminates. The mode of failure in bolted joints can be controlled by geometrical parameters and the preferred fail safe mode of failure is ‘bearing’ which generally consists of matrix cracks, delamination and fibre microbuckling. Three-dimensional (3-D) pinned (without clamping force) and bolted (1 kN clamping force) joint models were developed in [0/90]s carbon fibre reinforced plastic (CFRP) laminates to show the clamping force effect on the onset and growth of delamination. It is shown that delamination was resulted from the shear stress components (Mode II & III) at the interface and the contribution of the out-of-plane component (Mode I - opening), so the clamping force, was negligible without modelling the in-plane failure modes and their coupling with delamination, which will be considered in future work.  相似文献   

19.
Finite element analysis is perhaps the most commonly used numerical method to model plasticity-induced fatigue crack closure. The state-of-the-art is reviewed and a comprehensive overview is presented, summarizing issues which must be considered and emphasizing potential difficulties. These include mesh refinement level, crack advancement schemes, crack shape evolution, geometry effects, and crack opening value assessment techniques.  相似文献   

20.
This paper investigates the fatigue delamination growth behavior in woven glass fiber reinforced polymer (GFRP) composite laminates under mixed-mode I/II conditions at cryogenic temperatures. Fatigue delamination tests were performed with the mixed-mode bending (MMB) test apparatus at room temperature, liquid nitrogen temperature (77 K) and liquid helium temperature (4 K), in order to obtain the delamination growth rate as a function of the range of the energy release rate, and the dependence of the delamination growth behavior on the temperature and the mixed-mode ratio of mode I and mode II was examined. The energy release rate was evaluated using three-dimensional finite element analysis. The fractographic examinations by scanning electron microscopy (SEM) were also carried out to assess the mixed-mode fatigue delamination growth mechanisms in the woven GFRP laminates at cryogenic temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号