首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhongqing Su  Lin Ye   《Composite Structures》2004,66(1-4):627-637
Delamination in composite structures plays a major role in lowering structural strength and stiffness, consequently downgrading system integrity and reliability. A Lamb wave-based quantitative identification technique for delamination in CF/EP composite structures was established. Propagation of Lamb waves in a series of composite laminates, individually bearing a delamination, was evaluated using dynamic FEM analyses. Taking advantage of wavelet transform and artificial neural algorithms, an Intelligent Signal Processing and Pattern Recognition (ISPPR) package was developed, by which the spectrographic characteristics of simulated Lamb wave signals in the time-frequency domain were extracted and digitised as Digital Damage Fingerprints (DDF), to construct a Damage Parameters Database (DPD). The DPD was then used offline to train a multi-layer feedforward artificial neural network (ANN) under supervision of an error-backpropagation (BP) algorithm. Assisted by an active online structural health monitoring (AO-SHM) system with an active piezoelectric actuator/sensor network, the proposed methodology was validated online by identifying actual delaminations in CF/EP (T650/F584) quasi-isotropic composite laminates.  相似文献   

2.
In this study, a damage identification approach was developed for carbon fibre/epoxy composite laminates with localized internal delamination. Propagation of the Lamb wave in laminates and its interaction with the delamination were examined. The fundamental symmetric Lamb wave mode, S0, and the lowest order shear wave mode, S0, were chosen to predict damage location. A real-time active diagnosis system was therefore established. This technique uses distributed piezoelectric transducers to generate and monitor the ultrasonic Lamb wave with narrowband frequency. The two-way switches were employed to minimize the number of transducers. A signal-processing scheme based on the time–frequency spectrographic analysis was utilised to extract useful diagnostic information. Also, an optimal identification method was applied on damage searching procedure to reduce errors and obtain the diagnostic results promptly. Experiments were conducted on [0/−45/45/90]s CF/EP laminates to verify this diagnosis system. The results obtained show that satisfactory detection accuracy could be achieved.  相似文献   

3.
A tension fatigue life prediction methodology for composite laminates is presented. Tension fatigue tests were conducted on quasi-isotropic and orthotropic glass epoxy, graphite epoxy, and glass/graphite epoxy hybrid laminates. Edge delamination onset data were used to generate plots of strain energy release rate as a function of cycles to delamination onset. These plots were then used along with strain energy release rate analyses of delaminations initiating at matrix cracks to predict local delamination onset. Stiffness loss was measured experimentally to account for the accumulation of matrix cracks and for delimination growth. Fatigue failure was predicted by comparing the increase in global strain resulting from stiffness loss to the decrease in laminate failure strain resulting from delaminations forming at matrix cracks through the laminate thickness. Good agreement between measured and predicted lives indicated that the through-thickness damage accumulation model can accurately describe fatigue failure for laminates where the delamination onset behaviour in fatigue is well characterized, and stiffness loss can be monitored in real time to account for damage growth.  相似文献   

4.
Abstract: This paper presents the results of experimental and numerical studies on the bending behaviour of carbon fibre‐reinforced epoxy composite containing delamination located at different positions along the laminate thickness. Experimental tests were conducted in three‐point bending using specimens with and without delamination to evaluate their bending behaviour. Numerical simulations were also performed in order to evaluate the maximum load as a function of the defect position and its size. The numerical model includes two‐dimensional solid elements of the ABAQUS software and a cohesive mixed mode damage model to simulate delamination propagation. The numerical and experimental results concerning the maximum load were found to be concordant. It was concluded that delaminations affect the bending behaviour of laminates mainly due to alterations in shear stress profiles.  相似文献   

5.
The influence of ply lay up and the interaction of residual thermal stresses and mechanical loading on the interlaminar asymmetric embedded delamination crack growth behavior have been investigated. Two sets of full three-dimensional thermo-elastic finite element analyses have been performed for the interlaminar elliptical delaminations, which may be due to manufacturing defects or other reasons and are located symmetrically with respect to the midplane in a quasi-isotropic FRP composite laminate lay up. Depending upon the through-the-thickness location of the embedded elliptical delaminations, four different laminate configurations have been considered. Strain energy release rate (SERR) procedures have been employed to assess the delamination crack growth characteristics at the interfaces. It is found that the individual fracture modes exhibit asymmetric and non self-similar crack growth behavior along the delamination front depending upon the location of the interfacial delaminations; ply sequence and orientation and thermo-elastic anisotropy of the laminae.  相似文献   

6.
The authors and Hitachi Cable, Ltd. have recently developed small-diameter optical fiber and its fiber Bragg grating (FBG) sensor for embedment inside a lamina of composite laminates without strength reduction. The outside diameters of the cladding and polyimide coating are 40 and 52 μm, respectively. First, a brief summary is presented for applications of small-diameter FBG sensors to damage monitoring in composite structures. Then, we propose a new damage detection system for quantitative evaluation of delamination length in CFRP laminates using Lamb wave sensing. In this system, a piezo-ceramic actuator generates Lamb waves in a CFRP laminate. After the waves propagate in the laminate, transmitted waves are received by an FBG sensor attached on or embedded in the laminate using a newly developed high-speed optical wavelength interrogation system. This system was applied to detect interlaminar delamination in CFRP cross-ply laminates. When the Lamb waves passed through the delamination, the amplitude decreased and a new wave mode appeared. These phenomena could be well simulated using a finite element analysis. From the changes in the amplitude ratio and the arrival time of the new mode depending on the delamination length, it was found that this system could evaluate the delamination length quantitatively. Furthermore, small-diameter FBG sensors were embedded in a double-lap type coupon specimen, and the debonding progress could be evaluated using the wavelet transform.  相似文献   

7.
Piezo-ceramic transducers of the surface mounted type are commonly used for structural health monitoring (SHM) techniques. But, there is a disadvantage to use piezo-ceramic transducers of the surface mounted type in Lamb wave application. Due to the symmetric and antisymmetric Lamb wave modes generated by the surface mounted piezo-ceramic transducers simultaneously, the received signals are very complex and it is difficult to extract damage information from the signals.

In this paper, the practical method for SHM was proposed using piezo-ceramic transducers of the surface mounted type and Lamb wave. In order to overcome the difficulties in the signal processing of the simultaneous modes, the symmetric and antisymmetric modes were separated by using the two sensors bonded on the opposite surfaces at the same point. Also, spectral analyses of the separated symmetric and antisymmetric Lamb waves showed that each mode propagated with different frequency characteristics in the exciting frequency range.

By making use of these findings, the changes of power spectrum density in characteristic frequency band of symmetric and antisymmetric modes are proportional to the delamination size in quasi-isotropic Gr/Ep laminates. Therefore, this paper presents the damage assessment technique to extract damage information from the complicated PZT signals that could not be interpreted in time domain.  相似文献   


8.
面内损伤对埋藏分层影响的三维有限元分析   总被引:1,自引:1,他引:0  
运用大型有限元软件ANSYS,基于复合材料层合板损伤理论,建立了含面内损伤和埋藏分层的复合材料层板三维有限元模型.分析了面内损伤对复合材料层板分层的影响.采用三维Hashin准则预测复合材料损伤,分层区损伤采用多种损伤模型,损伤发生后,认为材料仍连续,并修改损伤单元对应的材料参数.通过虚拟裂纹闭合技术(VCCT)计算分...  相似文献   

9.
《Composites Part A》2003,34(1):93-103
The concept of quasi-isotropic laminates is very well documented in literature. Essentially, the laminate consists of laminae with fibers at equal angular spacing. The theoretical analysis of these laminates, based on the laminate theory, suggests that the elastic properties of the laminate will be isotropic. It is obvious that the theory makes some simplifying assumptions and hence the question remains that if this laminate is not really isotropic then how much anisotropic is it? Presented here is the experimental determination of the elastic modulus of a quasi-isotropic laminate [0/45/−45/90]S by tensile mechanical testing and corroborated by a newly developed automated ultrasonic Lamb wave measurement. The Lamb wave velocity measurement in frequency domain is used to estimate the in-plane elastic constants: elastic modulus and the Poisson's ratio, non-destructively. The ultrasonic method provides a non-invasive and non-damaging method for the measurement.  相似文献   

10.
采用非接触空耦传感器在准各向同性复合材料板中激励出单一的Lamb波模态,用于分层缺陷的扫描检测。扫描时,激励和接收传感器置于复合材料板同侧并相对倾斜布置,传感器沿2个正交方向同步线性扫描,得到不同位置的检测信号。对不同扫描路径下的检测信号进行连续小波变换,提取激励频率下的小波系数包络信号,对分层缺陷进行成像。在此基础上,利用概率损伤算法定义损伤指数,结合不同方向的损伤指数实现分层缺陷成像。采用全加法和全乘法对2个正交扫描方向得到的成像结果进行数据融合,实现了分层缺陷的定位和重构。并在成像算法中引入阈值,进一步提高了分层缺陷的定位精度以及重构质量。  相似文献   

11.
With the development of new technology and use of lightweight material such as composite laminates, new methods must be developed for in situ structural health monitoring of these materials. This paper introduces an approach for the detection of delamination present in GLARE aluminium specimens. The approach is based on the change in group velocity of Lamb waves with frequency–thickness product as the determinant parameter for the detection of delamination. Two methods are applied: a surface contact method, which utilises a wedge probe tuned to excite a single Lamb mode, and the embedded PZT method, which involves incorporating lead zirconate titanate (PZT) elements in the glass fibre reinforced resin matrix during the manufacture of the GLARE aluminium specimens. It was found that both methods enabled the detection of delaminations in the GLARE aluminium specimens, within certain limits, which are stated.  相似文献   

12.
The paper presents a set of numerical results on the use of surface mounted piezoelectric transducers to analyse the effects of impact damage and delamination of plate-like structures on the Lamb wave mode. The effects of the size, properties and orientation of the damage upon a propagating Lamb wave is qualitatively determined. In this paper, impact damage was simulated by a local change in the stiffness of the material in the structure and a delamination. The effects on the transmission of the incident Lamb wave when it propagates through a region of change in density are analysed. This paper will also demonstrate how the properties of a propagating Lamb wave can be affected by the existence of a delamination in a plate.  相似文献   

13.
基于铁木辛柯梁理论,研究含半无限大分层复合材料梁结构中波的反射与透射。考虑表面无接触压力(张开分层)及表面完全接触(闭合分层)两种极端分层条件,对单向复合材料梁建模导出反射与透射矩阵,计算能量反射与透射系数。数值结果表明,能量反射与透射系数同随波频率及分层位置变化,能量传输遵循守恒定律。研究各模态能量分配,描述前两阶弯曲波及第一阶膨胀波间模态转换关系;通过有限元仿真验证该理论分析的正确性。  相似文献   

14.
Matrix cracking and edge delamination are two main damage modes in continuous-fibre composite laminates. They are often investigated separately, and so the interaction between two damage modes has not yet been revealed. In this paper, a simple parallel-spring model is introduced to model the longitudinal stiffness reduction due to matrix cracking and edge delamination together. The energy release rate of edge delamination eliminating the matrix crack effect and the energy release rate of matrix cracking in the presence of edge delamination are then obtained. Experimental materials include carbon- and glass-fibre-reinforced bismaleimide composite laminates under static tension. The growth of matrix cracks and edge delaminations was recorded by means of NDT techniques. Results show that matrix cracks may initiate before or after edge lamination. This depends on the laminate layup, and especially on the thickness of the 90° plies. Edge delamination may also induce matrix cracking. Matrix cracking has a significant effect on the stiffness reduction in GRP laminates. The present model can predict the stiffness reduction in a laminate containing both matrix cracks and edge delaminations. The mixed-mode delamination fracture toughness obtained from the present model shows up to 50% differences compared with O'Brien's model for GRP laminates. However, matrix cracking has a small effect on the mixed-mode interlaminar fracture toughness of the CFRP laminates.  相似文献   

15.
An experimental and numerical study has been carried out to understand and predict the compressive failure performance of quasi-isotropic carbon–epoxy laminates with out-of-plane wrinkle defects. Test coupons with artificially induced fibre-wrinkling of varied severity were manufactured and tested. The wrinkles were seen to significantly reduce the pristine compressive strength of the laminates. High-speed video of the gauge section was taken during the test, which showed extensive damage localisation in the wrinkle region. 3D finite element (FE) simulations were carried out in Abaqus/Explicit with continuum damage and cohesive zone models incorporated to predict failure. The FE analyses captured the locations of damage and failure stress levels very well for a range of different wrinkle configurations. At lower wrinkle severities, the analyses predicted a failure mode of compressive fibre-failure, which changed to delamination at higher wrinkle angles. This was confirmed by the tests.  相似文献   

16.
Fibre-reinforced multidirectional composite laminates are observed in experiments under transverse static or low-velocity impact loading to suffer considerable delamination damage. The intensity of this damage depends on the difference in the ply angles above and below the interface. In this paper a fracture mechanics model is presented for investigating the role of matrix cracks in triggering delaminations and the influence of ply angles in adjacent plies on delamination cracking. The fracture mechanics analysis shows that for a graphite fibre-reinforced composite laminate containing a transverse intraply crack, the crack-induced largest interfacial principal tensile stress is a maximum when the difference between the ply angles across the interface is 90 °, and it attains a minimum when the difference is 40 °. When the crack tips touch the interfaces, the minimum mode II stress singularity, which is weaker than the usual square-root type, appears when the difference between the ply angles is about 45 ° for one glass fibre-reinforced laminate and three graphite fibre-reinforced laminates. These results are in agreement with the experimental observation that the largest delaminations appear at the interface across which the difference between the ply angles is the largest i.e. 90 °.  相似文献   

17.
基于Mindlin一阶剪切理论分项等参插值的有限元法, 建立了含多个分层损伤复合材料层合板自由振动分析的有限元模型和分析方法, 并采用线性接触模型模拟分层区域上、 下子板的相互作用。通过典型数值算例, 讨论了分层位置、 数目及板的边界条件诸参数对其振动特性的影响。结果表明: 分层位置沿板长方向变化时, 中间分层的频率变化范围较大, 表面分层变化较小, 但变化趋势基本相同; 沿层合板厚度方向, 多分层中最长分层的位置越靠近层合板中面, 则其对振动特性的影响越大; 多个分层位置较靠近层合板表面, 且板边界条件约束较弱时, 多分层与单分层对振动特性影响的差别不大, 此时, 可将多分层损伤层合板简化为单分层损伤层合板来进行振动分析。   相似文献   

18.
An investigation into size effects and notch sensitivity in quasi-isotropic carbon/epoxy laminates was carried out. The purpose is to draw a complete picture of the strength scaling in unidirectional, quasi-isotropic, and notched carbon/epoxy laminates. A link was established between the strength scaling of the unidirectional and quasi-isotropic laminates. Efforts were made to understand the relationship between unnotched and open-hole strengths. For very small holes, the notched strengths approach the unnotched strength limit. A scaling law based on Weibull statistics was used to predict the unnotched laminate strengths. For very large holes, the same scaling law in conjunction with a detailed 3D ply-by-ply FE analysis with matrix cracks in the 90° plies and delamination cohesive interface elements was used to predict the large notched strengths. A good agreement between the modelling and experimental results was achieved. The effects of 90° matrix cracks on unnotched and notched strengths were also studied.  相似文献   

19.
Clamping force is a key element that alters the mechanism and sequence of failure in bolted joints of composite laminates. The mode of failure in bolted joints can be controlled by geometrical parameters and the preferred fail safe mode of failure is ‘bearing’ which generally consists of matrix cracks, delamination and fibre microbuckling. Three-dimensional (3-D) pinned (without clamping force) and bolted (1 kN clamping force) joint models were developed in [0/90]s carbon fibre reinforced plastic (CFRP) laminates to show the clamping force effect on the onset and growth of delamination. It is shown that delamination was resulted from the shear stress components (Mode II & III) at the interface and the contribution of the out-of-plane component (Mode I - opening), so the clamping force, was negligible without modelling the in-plane failure modes and their coupling with delamination, which will be considered in future work.  相似文献   

20.
《Composites Part B》2007,38(4):488-497
Utilization of embedded Fiber Bragg Grating (FBG) sensors for monitoring mode II fracture behaviour of composite laminate beams containing different delaminations along the thickness-wise direction, by virtue of End-Notch Flexure (ENF) tests, is presented. Non-uniform strain distribution due to the stress concentration at the delamination tip was examined by the way of observing the reflection spectrum from the FBG sensor. The stress concentration in ENF specimens, which are subjected to various applied loads, was analyzed in terms of the shift, shape, bandwidth and intensity of the reflection spectrum. Relationships between the load–displacement graphs and the corresponding reflection spectra under ENF tests were established. In addition, the feasibility and reliability of using the embedded FBG sensors for mode II fracture behaviour monitoring in the composite laminates is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号