首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The feasibility of incorporating fly ash cenospheres in die cast magnesium alloy has been demonstrated. The effects of fly ash cenosphere additions on the microstructure and some of the salient physical and mechanical properties of magnesium alloy (AZ91D) metal matrix composites were investigated. The control AZ91D alloy and associated composites, containing 5, 10, and 15 wt.% of fly ash cenospheres (added), were synthesized using a die casting technique. A microstructural comparison showed that microstructural refinement – occurred due to the fly ash additions and became more pronounced with an increase in the percentage of the fly ash added. The metal matrix areas nearer to the fly ash particles exhibited a greater degree of refinement than was observed in the areas further away from these particles. Both filled and unfilled fly ash cenospheres, and porosity were observed in the composite microstructures. The composite specimen densities decreased and the coefficient of thermal expansion did not change significantly as the volume percent of fly ash was increased within the range investigated. The hardness values of the composite specimens exhibited an increase in proportion to the increase in percentage of added fly ash. The tensile strength of the composites also increased as the concentration of fly ash cenospheres was increased. In contrast, the Young’s modulus of these composite samples, as measured by non-destructive pulse-echo method, decreased as the percentage of fly ash in the composite was increased. SEM micrographs of the tensile fracture surfaces showed broken cenospheres on the fracture surface and evidence of ‘pull outs’, where fly ash particles were previously embedded in the matrix. Compression testing results showed that the presence of 5 wt.% cenospheres decreased the compressive strength and compressive yield strength of the composite relative to that of the AZ91D matrix alloy. Surprisingly, a significant change in compression strength was not observed for the composites with 10 and 15 wt.% cenospheres in comparison to the AZ91D matrix alloy. In contrast to the tensile tests, no cenosphere remnants were observed on the compressive test fracture surface of the composites. This observation suggests that the fracture of the composite was initiated within the AZ91D matrix by normal void nucleation and growth, followed by crack propagation through the matrix, avoiding any of the cenospheres, leading to composite fracture of the matrix.  相似文献   

2.
以AZ91D镁合金为基体,采用搅熔铸造法将球磨后的粉煤灰漂珠颗粒加入到熔融态基体中,设置球磨漂珠质量分数(2%、6%和10%)和搅拌时间(3min和6min),成功制备了Mg2Si/AZ91D复合材料。采用金相分析、XRD分析和动态机械热分析等方法研究了铸态和固溶态Mg2Si/AZ91D复合材料的显微组织、成分及阻尼性能。研究表明:与AZ91D镁合金相比,加入球磨漂珠颗粒后制备的Mg2Si/AZ91D复合材料中生成了Mg2Si相,而且随着漂珠质量分数的增加,Mg2Si相呈现不规则形状,固溶后Mg2Si相呈现均匀块状。随着漂珠质量分数的增加,Mg2Si/AZ91D复合材料的阻尼性能越好,搅拌时间6min制备的复合材料阻尼性能高于搅拌时间3min制备的复合材料的阻尼性能,并且固溶态的阻尼性能优于铸态。在室温下,Mg2Si/AZ91D复合材料阻尼性能可用位错理论来解释。  相似文献   

3.
The effect of simultaneous alloying with Ca and rare earth (RE) elements on the age hardening kinetics of AZ91 was studied through the fitting of the Johnson-Mehl-Avrami (JMA) equation. The results showed that the addition of both Ca and RE elements not only suppress discontinuous precipitation of the Mg17Al12 phase during the age hardening process, but also decrease the alloy hardness. Fitting the JMA equation to the experimental data indicated that the phase transformation during age hardening of an alloy variant containing both Ca and RE (at 170 °C and 190 °C) and standard AZ91 (at 170 °C) takes place by the nucleation of precipitates on dislocations. In contrast, the precipitation during age hardening of AZ91 at 190 °C occurs via nucleation at grain boundaries. Although it was observed that the creep strength of age hardened specimens are lower than that of the as cast specimens, but age hardening treatment has lower deleterious influence on the creep resistance of the alloy containing Ca and RE in comparison with conventional AZ91. This may be ascribed to the decreased precipitation rate resulting from the addition of both Ca and RE elements.  相似文献   

4.
In order to get improved mechanical properties of die-cast AZ91 alloy under elevated temperatures, Ca element was added as a cost-effective alloying constituent. It appeared that minor Ca addition less than 0.5 wt% would result in no apparent change in microstructure, but the tensile strength at elevated temperatures was improved considerably. When increasing Ca addition to more than 1.0 wt%, Al2Ca phase will precipitate during solidification, no Mg2Ca phase was discovered. Homogeneous microstructure and high temperature stability in tensile strength of die-cast AZ91 alloy with Ca addition was mainly attributed to the precipitation of Al2Ca phase, which considerably refined the bulky β-Mg17Al12 phase distributed originally at the grain boundaries of die-cast AZ91 alloy with no Ca addition. The priority of Al2Ca phase compared to Mg2Ca phase in precipitation sequence was verified by first-principle calculation of their cohesive energy and formation enthalpy, and can also be associated with more bounding electrons between Al and Ca atoms.  相似文献   

5.
The main aim of this study was to simultaneously increase tensile strength and ductility of AZ31/AZ91 hybrid magnesium alloy with Si3N4 nanoparticles. AZ31/AZ91 hybrid alloy nanocomposite containing Si3N4 nanoparticle reinforcement was fabricated using solidification processing followed by hot extrusion. The nanocomposite exhibited similar grain size to the monolithic hybrid alloy, reasonable Si3N4 nanoparticle distribution, non-dominant (0 0 0 2) texture in the longitudinal direction, and 13% higher hardness than the monolithic hybrid alloy. Compared to the monolithic hybrid alloy (in tension), the nanocomposite simultaneously exhibited higher yield strength, ultimate strength, failure strain and work of fracture (+12%, +5%, +64% and +71%, respectively). Compared to the monolithic hybrid alloy (in compression), the nanocomposite exhibited higher yield strength and ultimate strength, lower failure strain and higher work of fracture (+35%, +4%, −6% and +6%, respectively). The beneficial effects of Si3N4 nanoparticle addition on the enhancement of tensile and compressive properties of AZ31/AZ91 hybrid alloy are investigated in this paper.  相似文献   

6.
The effects of Ca addition on the microstructure and mechanical properties of AZ91 magnesium alloy have been studied. The results show that the Ca addition can refine the microstructure, reduce the quantity of Mg17Al12 phase, and form new Al2Ca phase in AZ91 magnesium alloy. With the Ca addition, the tensile strength and elongation of AZ91magnesium alloy at ambient temperature are reduced, whereas Ca addition confers elevated temperature strengthening on AZ91 magnesium alloy. The tensile strength at 150°C increases with increasing Ca content. The impact toughness of AZ91magnesium alloy increases, and then declines as the Ca content increases. The tensile and impact fractographs exhibit intergranular fracture features, Ca addition changes the pattern and quantity of tearing ridge, with radial or parallel tearing ridge increasing, tensile strength, elongation and impact toughness reduce.  相似文献   

7.
通过搅拌铸造法向半固态AZ91D镁合金中添加粉煤灰漂珠(FAC)制备了FAC/AZ91D镁合金复合材料,研究了FAC粒径对该复合材料阻尼性能的影响。结果表明:FAC/AZ91D镁合金复合材料的阻尼性能明显优于基体材料,在FAC含量相同时,FAC的粒径越大,其阻尼性能越好。室温下FAC对提高FAC/AZ91D镁合金复合材料的阻尼性能起重要作用,FAC附近的基体产生了高密度的位错,形成了塑性区。室温下FAC粒径越大,在其附近产生的塑性区越大,阻尼性能越好。随温度的升高,FAC/AZ91D镁合金复合材料的阻尼性能迅速提高。位错、晶界以及FAC和基体之间的界面运动是提高阻尼性能的关键。   相似文献   

8.
Magnesium matrix composites reinforced with two volume fractions (1 and 3%) of SiC particles (1 μm) were successfully fabricated by ultrasonic vibration. Compared with as-cast AZ91 alloy, with the addition of the SiC particles grain size of matrix decreased, while most of the phase Mg17Al12 varied from coarse plates to lamellar precipitates in the SiCp/AZ91 composites. With increasing volume fraction of the SiC particles, grains of matrix in the SiCp/AZ91 composites were gradually refined. The SiC particles were located mainly at grain boundaries in both 1 vol% SiCp/AZ91 composite and 3 vol% SiCp/AZ91 composite. SiC particles inside the particle clusters may be still separated by magnesium. The study of the interface between the SiC particle and the alloy matrix suggested that SiC particles bonded well with the alloy matrix without interfacial reaction. The ultimate tensile strength, yield strength, and elongation to fracture of the SiCp/AZ91 composites were simultaneously improved compared with that of the as-cast AZ91 alloy.  相似文献   

9.
AZ91 alloy matrix composites reinforced with phases formed in situ from the addition of Si particles were fabricated by solidification under ultrasonic vibrations. Application of high-intensity ultrasonic field to the melt resulted in optimized size, morphology and distribution of in situ formed Mg2Si particles. The amount of Mg2Si particles increased, its size was refined and the distribution became uniform. Heterogeneous nucleation from the addition of silicon particles and enhanced nucleation from rapid cooling refined the grain size of the matrix in the composites. Hardness and ultimate compressive strength of the composites increased as compared to that of the cast AZ91 alloy. Composites exhibited improved sliding wear behavior of under varying normal loads. Identified dominant wear mechanism at lower sliding velocities is abrasion. Improvement in mechanical and sliding wear properties of the composites is attributed to the refinement of both matrix and reinforcement phases and improved dispersion of the reinforcement under ultrasonic vibrations.  相似文献   

10.
The tensile property and cold formability of a Mg96Zn2Y2 alloy sheet containing Mg-, long-period ordered (LPO)-, and Mg3Zn3Y2-phases were investigated. The Mg96Zn2Y2 alloy sheet exhibited a high yield stress of 320 MPa and elongations of 11% at room temperature and could be prepared by hot-rolling. After, annealing at 773 K for 0.6 ks, although the yield stress decreased to 200 MPa, elongation increased to 20%. Texture randomization due to re-crystallization of the Mg phase that occurred in the annealed Mg96Zn2Y2 alloy sheet was confirmed by EBSD analysis. The formability of a Mg96Zn2Y2 alloy sheet and an AZ31-O sheet was evaluated via a 90° V-bending test at room temperature. The annealed Mg96Zn2Y2 alloy sheet could be bent without cracking with a minimum bending radius per thickness of R/t = 3.3, which is less than that of the as-rolled Mg96Zn2Y2 alloy sheet and the AZ31-O sheet. This improvement in the cold formability of the Mg96Zn2Y2 alloy sheet is considered due to an increase in randomness of the Mg phase that results from re-crystallization of the Mg phase.  相似文献   

11.
The effect of different solution temperatures has been investigated on the microstructure and tensile properties of in situ Al–Mg2Si composite specimens were subjected to solutionizing at different temperatures of 300 °C, 350 °C, 400 °C, 450 °C, 500 °C, 550 °C and 580 °C for holding time of 4 h followed by quenching. The microstructural studies of the polished and etched samples by scanning electron microscopy (SEM) in the solution condition indicated that the increase in the temperature changes the morphology of both the primary and secondary Mg2Si phases. Solutionizing led to the dissolution of the Mg2Si particles and changed their morphology. Tensile test results indicated that ultimate tensile strength (UTS) gradually decreased upon solutionizing from 300 to 550 °C while further increase in the temperature followed by a sharp decrease in UTS up to 580 °C solutionizing temperature. It was found that the elongation has become three times greater in comparison to the as-cast state. Elongation results showed an increase up to 500 °C and then reduced temperatures of 550 and 580 °C. Fractographic analysis revealed a cellular nature for the fracture surface. On the cellular fracture surface, the features of both brittle and ductile fracture were present simultaneously. As a result of solution treatment the potential sites for stress concentration and crack initiation areas were reduced due to softening of the sharp corners and break up of eutectic network respectively, while increase in the number of fine dimples rendered the nature of fracture to ductile and also increased elongation.  相似文献   

12.
Blown-powder laser surface alloying was performed on the magnesium alloy AZ91D with Al–Si alloy powder to improve corrosion resistance. Characterization by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and x-ray diffraction (XRD) analysis revealed that intermetallic compounds (IMCs) of Mg2Si, Al12Mg17 and Al3Mg2 were formed in the matrix of α-Mg and Al solid solutions in Al–Si alloyed layers. The anodic polarization test in 3.5% NaCl aqueous solution showed that preferential corrosion occurred in the α-Mg matrix of the AZ91D base metal. The Al–Si alloyed layers exhibited a lower corrosion rate and a higher polarization resistance than AZ91D. The compactly dispersed dendritic Mg2Si phase, and the dendritic and angular phases of Al12Mg17 and Al3Mg2 in the alloyed microstructure were observed to be corrosion-resistant, constituting a barrier that retards corrosion. Corrosion initiated at the interface between IMCs and the solid solution matrix, and at substructures of the matrix, subsequently pervaded into the surrounding microstructure.  相似文献   

13.
The effects of 2 wt.% rare earth element addition on the microstructure evolution, thermal stability and shear strength of AZ91 alloy were investigated in the as-cast and annealed conditions. The as-cast structure of AZ91 consists of α-Mg matrix and the β-Mg17Al12 intermetallic phase. Due to the low thermal stability of this phase, the strength of AZ91 significantly decreased as the temperature increased. The addition of rare earth elements refined the microstructure and improved both thermal stability and high-temperature mechanical properties of AZ91. This was documented by the retention of the initial fine microstructure and ultimate shear strength (USS) of the rare earth elements-containing material after long-term annealing at 420 °C. The improved stability and strength are attributed to the reduction in the volume fraction of β-Mg17Al12 and retention of the thermally stable Al11RE3 intermetallic particles which can hinder grain growth during the annealing process. This behavior is in contrast to that of the base material which developed a coarse grain structure with decreased strength caused by the dissolution of β-Mg17Al12 after exposure to high temperature.  相似文献   

14.
Carbon fiber reinforced AZ91D matrix composites with pyrolytic (PyC) coating deposited on fiber surface (PyC-Cf/AZ91D composites) have been fabricated by Liquid-solid extrusion following vacuum pressure infiltration technique (LSEVI). Interfacial microstructure and failure behavior of the composites were investigated. Instead of interfacial reaction products, block-shaped interfacial precipitates Mg17Al12 were detected at the interface, which indicates that interfacial reaction was restrained by LSEVI and PyC coating. Nano-MgO was detected at the interface. Interfacial failure behavior of the PyC-Cf/AZ91D composites, which was the failure between PyC coating and AZ91D alloy due to the mismatch of thermal expansion and relatively poor bonding, was proposed. Fracture surface of the PyC-Cf/AZ91D composites was characterized by fibers pulling-out tests. PyC coating served not only as protection to the fibers, but also an adjustment of the interface of the composites.  相似文献   

15.
We developed a facile and low-cost approach to prepare lightweight and high-strength magnesium–matrix composites with a nacre-inspired laminated structure. First, lamellar Mg2B2O5 whisker (Mg2B2O5w) scaffolds with initial solid loadings of 10, 15 and 20 vol% were prepared by ice templating. The wettability between a molten AZ91D alloy and the Mg2B2O5w scaffold was greatly improved by the incorporation of nano-SiO2 sol in the aqueous slurry, making the preparation of nacre-mimetic AZ91D/Mg2B2O5w composite by way of pressureless infiltration feasible. The SiO2 content in the Mg2B2O5w scaffold has a significant effect on the processing and the microstructure and properties of the composites. The optimum SiO2 content was about 6–8 wt% of the total ceramic loading. A lower SiO2 content resulted in incomplete infiltration, while a higher content led to the formation of a large quantity of Mg2Si in the composite. The flexural strength of the composites seemed independent of the initial ceramic loading (10–20 vol%), whereas the compressive strength and elastic modulus increased considerably and the crack-growth fracture toughness decreased with increasing ceramic content. The mechanism for such variations was addressed.  相似文献   

16.
Abstract

Blown-powder laser surface alloying was performed on the magnesium alloy AZ91D with Al–Si alloy powder to improve corrosion resistance. Characterization by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and x-ray diffraction (XRD) analysis revealed that intermetallic compounds (IMCs) of Mg2Si, Al12Mg17 and Al3Mg2 were formed in the matrix of α-Mg and Al solid solutions in Al–Si alloyed layers. The anodic polarization test in 3.5% NaCl aqueous solution showed that preferential corrosion occurred in the α-Mg matrix of the AZ91D base metal. The Al–Si alloyed layers exhibited a lower corrosion rate and a higher polarization resistance than AZ91D. The compactly dispersed dendritic Mg2Si phase, and the dendritic and angular phases of Al12Mg17 and Al3Mg2 in the alloyed microstructure were observed to be corrosion-resistant, constituting a barrier that retards corrosion. Corrosion initiated at the interface between IMCs and the solid solution matrix, and at substructures of the matrix, subsequently pervaded into the surrounding microstructure.  相似文献   

17.
In this research, friction stir weldability of 15 wt.% Mg2Si particulate aluminum matrix cast composite and effects of tool rotation speed and number of welding passes on microstructure and mechanical properties of the joints were investigated. Microstructural observations were carried out by employing optical and scanning electron microscopy of the cross sections perpendicular to the tool traverse direction. Mechanical properties including microhardness and tensile strength were evaluated in detail. The results showed fragmentation of Mg2Si particles and Mg2Si needles existing in eutectic structure in stir zone. Also, homogeneous distribution of Mg2Si particles was observed in the stir zone as a result of stirring with high plastic strains. Tension test results indicated that tensile strength of the joint had an optimum at 1120 rpm tool rotation speed and decreased with increasing of the number of welding passes. Hardness of the joint increased due to modification of solidification microstructure of the base composite. This research indicates that friction stir welding is a good candidate for joining of 15 wt.% Mg2Si aluminum matrix composite castings.  相似文献   

18.
The elevated temperature deformation behavior of permanent cast magnesium alloy AZ91 with and without Sb addition has been investigated using slow strain rate (5.0 × 10–4s–1) elevated temperature tensile and constant load creep testing at 150°C and 50 MPa. The alloy with 0.4 wt% Sb showed a higher elevated temperature tensile strength and creep resistance due to the formation of thermal stable Mg3Sb2 precipitates and a smaller microstructure as well as the suppressing of the discontinuous precipitation. Plastic deformation of AZ91 based alloys is determined by motion of dislocation in basal plane and non-basal slip systems. The dislocation motion in a slip system is influenced by temperature, precipitates and other lattice defects. Dislocations jog, grain boundaries and/or precipitates are considered as obstacles for moving dislocations. The deformation twinning were founded in the creep process by TEM. Cross slip of dislocations was taken into account as the main softening mechanism for permanent cast AZ91 alloy during elevated temperature deformation process.  相似文献   

19.
AZ91D, as one of the most widely used casting magnesium alloys, still suffers from inadequate mechanical performances for various applications. Nanoparticles could be used to form high‐performance magnesium matrix nanocomposites. Among all nanoparticles, TiB2 has great potentials to enhance the mechanical property of AZ91D. This paper studies the microstructures and mechanical property of AZ91D‐TiB2 nanocomposites fabricated through solidification nanoprocessing. TiB2 nanoparticles with a diameter of 25 nm are effectively fed into the AZ91D melt through a newly developed automatic nanoparticle‐feeding system. Ultrasonic cavitation is used to disperse these nanoparticles in AZ91D melt for casting. With 2.7 wt% (about 1.0 vol%) of TiB2 nanoparticles addition, the mechanical property of AZ91D is much enhanced (by 21, 16, and 48% for yield strength, tensile strength, and ductility, respectively). Microstructural analysis with optical microscope, SEM, and S/TEM show that α‐Mg grain and a network of massive brittle intermetallic phase (β‐Mg17Al12) are simultaneously refined and modified. Further study suggests that the enhancement of mechanical properties of AZ91D is attributed not only to primary phase grain refinement, but also to the modification of intermetallic β‐Mg17Al12 by TiB2 nanoparticles.  相似文献   

20.
The squeeze casting process was used to fabricate Al2O3sf/AZ91D magnesium matrix composites before thixoforging. The microstructural evolution process in Al2O3sf/AZ91D was investigated during partial remelting. Tensile mechanical properties of thixoforged automotive component were determined and compared with those of squeeze casting formed composites. The results show that the microstructural evolution during partial remelting exhibited four stages: the formation of liquid, structural fragmentation, the spheroidization of solid particles, and final coarsening. As the holding time increases, the size of solid particles decreases initially and then increases. However, the size of solid particles decreases monotonously as the temperature increases. Increasing holding time or temperature promotes the degree of spheroidization. It is also shown that the cylindrical feedstock of the Al2O3sf/AZ91D composites can be thixoforged in one step into intricate shapes in the semi-solid state. The tensile tests indicate that the yield strength and ultimate tensile strength for Al2O3sf/AZ91D thixoforged from starting material fabricated by squeeze casting and partial remelting are better than those of Al2O3sf/AZ91D fabricated by squeeze casting. This research confirms that thixoforging is a practical method for the near net shape forming of magnesium matrix composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号