首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Composites Part B》2013,45(1):200-211
This paper presents the results of an experimental study carried out to compare the effectiveness of ferrocement and fibre reinforced polymers (FRPs) jackets for the repair of post-heated square and circular reinforced concrete columns. The suite of test specimens comprised (a) non-heated and non-repaired; (b) post-heated and non-repaired and (c) post-heated and repaired, columns. Glass fibre reinforced polymer (GFRP), carbon fibre reinforced polymer (CFRP) and ferrocement jackets were used to repair the heated columns. All the columns were tested under axial compression. The test results covering the axial compressive strength, stiffness (secant stiffness), ductility, deformation and energy dissipation for the non-heated and non-repaired, and post-heated and non-repaired columns, were explored and compared with those of the post-heated columns repaired with FRP and ferrocement jackets. The test results showed that the FRP jackets increased the compressive strength, ductility, deformation ability and energy dissipation capacity of post-heated columns but did not increase the stiffness. However, the ferrocement jackets enhanced both the strength and stiffness of the post-heated columns. It is concluded that a possible combination of ferrocement and FRP jackets is the optimum solution to restore the required strength, stiffness and ductility following structural damage from a fire.  相似文献   

2.
Confining columns with fibre reinforced polymer (FRP) composites have been investigated in the last few decades to address the problem of upgrading and retrofitting reinforced concrete (RC) columns; however, most studies have concentrated on solid columns. This paper investigates the comparative behaviour of FRP confined hollow RC columns subjected to concentric loading. A total of twelve RC columns made from high strength concrete (HSC) were cast and tested. Six of the columns had a circular cross section (two solid columns, two hollow columns each having a circular hole, and two hollow columns each having a square hole) and the remainder columns had a square cross section (two solid columns, two hollow columns each having a circular hole, and two hollow columns each having a square hole). Six columns in total, three from each configuration were left unconfined as control specimens, while the others were confined with FRP. It was found that FRP confinement increased hollow RC columns’ axial load and ductility capacities; and hollow columns having circular holes had better performance compared to hollow columns having square holes.  相似文献   

3.
M.N.S. Hadi   《Composite Structures》2007,78(4):560-566
The majority of columns are subjected to a combination of an axial load and a bending moment in one or two directions. With a few exceptions, most of the research in the area of FRP wrapped columns have concentrated on the behaviour of concentrically loaded columns. This paper presents results of testing nine reinforced high strength concrete columns. The column specimens are circular in shape with 205 mm diameter and 925 mm height. Concrete compressive strength was 65 MPa. All columns were reinforced with steel. Three columns were not wrapped, three columns were wrapped with three layers of carbon FRP and three columns were wrapped with three layers of E-Glass FRP. From each of the three groups, one column was tested concentrically, one column was tested with a 25 mm eccentric load and one column was tested with a 50 mm eccentric load. Results of testing the columns have shown that the carbon FRP is most effective in increasing the strength and ductility of columns.  相似文献   

4.
An experimental study was carried out to investigate the seismic performance of post-heated circular reinforced concrete columns wrapped with glass or carbon fibre reinforced polymer jackets. Eight shear critical reinforced circular columns with a shear span-to-depth ratio of 2.5 were tested under a combined constant axial and cyclic lateral displacement history, simulating earthquake loading. The columns were tested in three groups, unheated, post-heated and post-heated repaired with either glass fibre reinforced polymer (GFRP) or carbon fibre reinforced polymer (CFRP). In terms of seismic performance the test results indicated that using GFRP or CFRP jackets significantly increased the shear capacity, ductility and energy dissipation of the post-heated damaged columns. However, the GFRP or CFRP did not increase the stiffness of the post-heated damaged columns. It was found that the unheated and post-heated damaged columns failed in a brittle shear mode while the mode of failure of posted-heated columns repaired with GFRP or CFRP was successfully shifted from a shear to a ductile flexural failure.  相似文献   

5.
纤维增强聚合物复合材料(FRP)约束损伤混凝土抗压强度模型对于混凝土柱类构件的修复和加固具有重要指导意义.现有FRP修复混凝土的强度模型适用条件有限,同一模型不能同时应用于不同强弱约束、不同强度混凝土、不同倒角混凝土的强度预测.本文根据广义回归神经网络(GRNN)的特点,基于46个FRP强约束损伤混凝土方柱、210个F...  相似文献   

6.
Several experimental and analytical studies on the confinement effect and failure mechanisms of fiber reinforced polymer (FRP) wrapped columns have been conducted over recent years. Although typical axial members are large-scale square/rectangular reinforced concrete (RC) columns in practice, the majority of such studies have concentrated on the behavior of small-scale circular concrete specimens. The data available for square/rectangular columns are still limited. This paper reports the results of an experimental research program on the performance of large-scale square RC columns wrapped with carbon fiber reinforced polymer (CFRP) sheets. Attention is focused on the investigation of the total effect of longitudinal and transverse reinforcement and FRP jackets on the behavior of concentrically loaded columns. A total of 20 large-scale RC columns were fabricated and tested to failure under axial loading in the structural laboratory. Three types of columns were primarily considered: unwrapped; fully wrapped; and partially wrapped. Based on the test results of RC columns, existing experimental data and procedures in the literature are also evaluated. Furthermore, stress–strain curves of the columns are successfully predicted by the analytical approach previously proposed for FRP-confined concrete.  相似文献   

7.
This paper presents nonlinear finite element analysis of fiber reinforced polymer (FRP) jacketed reinforced concrete columns under combined axial and cyclic lateral loadings. Large-scale control and FRP-wrapped reinforced concrete columns (762 mm in diameter and 4978 mm in height) were modeled using the nonlinear finite element analysis software MARC™. The models were capable of allowing for the degradation of the stiffness under cyclic loading. The finite element analysis results indicated that reinforced concrete columns externally wrapped with the FRP fabric in the potential plastic hinge location at the bottom of the column showed significant improvement in both strength and ductility capacities, and the FRP jacket could be used to delay the degradation of the stiffness of reinforced concrete columns.  相似文献   

8.
顾冬生  吴刚 《工程力学》2013,30(1):261-270
基于性能的抗震设计要求对结构的变形能力能够进行计算,以确保不同的性能目标要求得以满足。该文研究地震荷载作用下纤维增强复合材料(FRP)加固钢筋混凝土(RC)圆柱截面曲率延性和柱顶侧向位移角计算方法。根据数值计算结果,得到了截面屈服曲率计算方法,由试验结果得到了FRP加固RC圆柱截面极限曲率计算方法。试验结果表明加固柱塑性铰长度和FRP用量密切相关,通过对29个大比例柱试验结果进行回归,得到了加固柱塑性铰长度计算方法,并分析了高FRP用量导致加固柱塑性铰长度减小的原因。经参数分析,探讨了FRP用量、轴压比与加固柱顶侧向变形能力的关系,提出了具有理想加固效率的FRP用量上限范围。  相似文献   

9.
《Composites Part B》2002,33(4):255-261
The performance of concrete columns externally wrapped with aramid fiber reinforced polymer composite sheets is presented in this paper. The confined and unconfined (control) specimens were loaded in uniaxial compression. Axial load and axial and hoop strains were measured in order to evaluate stress–strain behavior, ultimate strength, stiffness, and ductility of the wrapped specimens. Results show that external confinement of concrete by fiber reinforced polymer (FRP) composite sheets can significantly enhance strength, ductility and energy absorption capacity. An analytical model developed earlier by the author to predict the entire stress–strain response of concrete specimens wrapped with FRP composite sheets was applied. Comparison between the experimental and analytical results indicates that the model provides satisfactory predictions of the stress–strain response. The paper also presents the performance of the wrapped concrete specimens subjected to severe environmental conditions such as wet–dry and freeze–thaw cycles. The specimens were exposed to 300 cycles of wetting and drying using salt water. Results show that specimens wrapped with aramid fibers experienced no reduction in strength due to wet/dry exposure, but some reduction was observed due to freeze/thaw exposure.  相似文献   

10.
In this study, the performance of axially loaded, small-scale, and fiber-reinforced polymer (FRP) wrapped concrete columns with various wrap angle configurations, wrap thicknesses, and concrete strengths was investigated through nonlinear finite element analysis. Three different wrap thicknesses, wrap ply angle configurations of 0°, ±15°, and 0°/±15°/0° with respect to the circumferential direction, and concrete strength values ranging from 3 ksi to 6 ksi were considered. An existing experimental study on FRP-confined circular columns in the literature was utilized to validate numerical analysis models. The finite element analysis results showed substantial increase in the axial compressive strength and ductility of the FRP-confined concrete cylinders as compared to the unconfined cylinders. The increase in wrap thickness also resulted in enhancement of axial strength and ductility of the concrete columns. The gain in axial compressive strength in FRP-wrapped concrete columns was observed to be higher for lower strength concrete and the highest in the columns wrapped with the 0° ply angle configuration.  相似文献   

11.
对36个玄武岩纤维布增强聚合物基复合材料(BFRP)约束的高温损伤混凝土方柱和15个不同高温损伤的对比试件进行了轴压试验。试验表明,玄武岩纤维布横向约束能改变高温损伤后混凝土方柱的破坏形态,显著提高混凝土方柱的轴压强度和变形能力。其中三层玄武岩纤维布包裹的200℃、400℃、600℃和800℃高温损伤混凝土方柱轴压强度分别提高了48%、130%、206%和389%,轴向变形分别提高了433%、344%、319%和251%。采用典型的纤维增强聚合物基复合材料(FRP)约束常温未损伤混凝土轴压力学性能的设计模型预测FRP约束高温损伤混凝土的轴压强度和变形时存在较大的偏差。通过构建柱状膜结构静水压力平衡模型和约束混凝土方柱与FRP体积应变能平衡模型,分别改进了FRP约束混凝土方柱轴压极限应力和极限应变计算模型的基本形式。基于该基本形式和试验数据,分别确定了BFRP约束高温损伤混凝土方柱轴压极限应力和极限应变计算中与温度相关的参量,提出了适用于高温损伤混凝土方柱的轴压极限应力和极限应变的设计模型。   相似文献   

12.
The behaviour of concrete columns wrapped with fibre reinforced polymer (FRP) materials when exposed to several extreme conditions is evaluated. Cold regions environments, FRP repair of corroding reinforced concrete columns, and fire resistance are all considered. For the cold regions exposure, FRP wrapped cylinders (152 × 305 mm) are exposed to temperatures as low as −40 °C or to up to 300 cycles of freeze-thaw (−18 °C to +15 °C). The combination of freeze-thaw exposure with sustained loading is also examined. For FRP wrapping of corroding reinforced concrete columns, the results of tests on cylinders and larger-scale circular columns (300 × 1200 mm) are presented. The specimens are corroded and then wrapped with FRP sheets. The rate of corrosion is monitored both before and after wrapping. The final extreme condition that is considered is fire exposure. Tests on full-scale reinforced concrete columns (400 × 3800 mm) exposed to a standard fire are described and discussed. Overall, the results demonstrate that FRP confined concrete columns tested in concentric axial compression have adequate performance under several extreme conditions such as low temperature, freeze-thaw action, corrosion of internal reinforcement, and fire exposure.  相似文献   

13.
The assessment of the effectiveness of the fiber reinforced polymer (FRP) confinement on rectangular reinforced concrete (RC) columns with high aspect ratio (wall-like) still represents an unresolved issue. The present paper aims at providing more experimental evidence about the behavior of such members confined with both uni-directional and quadri-directional glass FRP laminates. Particular attention is devoted to issues related to the premature failure of confining fibers experimentally observed in wall-like columns. Test results on nine axially loaded columns are herein presented; emphasis is also given to the analysis of FRP strain profiles along the sides of the cross-section. The analysis of test results highlights that glass FRP (GFRP) confinement could determine significant strength and ductility increases; the discussion of failure modes points out that the failure of GFRP confined wall-like columns is controlled by the shape of the cross-section and occurs at transverse strains in the jacket much lower than those ultimate of the fibers. Theoretical–experimental comparisons are performed using some available models for strength prediction of such members.  相似文献   

14.
The structural behaviour of eccentrically loaded reinforced concrete columns with rectangular cross sections strengthened with a cement based composite materials wrapping system, is analysed in the paper, both experimentally and analytically.The main issues focussed in the paper were: i) the effectiveness of the cement based wrapping systems to improve the strength of the reinforced concrete columns, ii) the influence of the load eccentricity and the reinforcement ratio on the structural response of wrapped columns, iii) the prediction, by an analytical procedure, of the structural behaviour of wrapped columns.A total of 8 reinforced concrete columns with end corbels, wrapped with fabric meshes of PBO (short of Polypara-phenylene-benzo-bisthiazole) fibers embedded into a cement based matrix (PBO-FRCM system), were tested varying both the reinforcement ratio, ρf, and the eccentricity-to-section height ratio (e/h). The influence of mechanical and geometrical parameters on the structural response of wrapped columns was analysed in terms of failure modes, strength and ductility.To predict the structural response of wrapped columns, a non linear second-order analysis that takes into account the changes in geometry caused by lateral deformations is, also, developed. Theoretical results were compared with experimental ones to validate the effectiveness of the proposed procedure.  相似文献   

15.
In this study, 27 concrete cylinders with a diameter of 152.4 and a height of 304.8 mm were prepared. Among them, 18 cylinders were wrapped using two layers of fiber reinforced polymer (FRP) with six fiber orientations; six cylinders were wrapped using four layers of FRP with fibers in axial or hoop direction only; the remaining three cylinders were used as control. The FRP used was E-glass fiber reinforced ultraviolet (UV) curing vinyl ester. Fifteen coupon specimens were prepared to experimentally determine the tensile strength of the FRP with fibers oriented at 0°, 45°, and 90° from the loading direction. Co-axial compression tests were conducted on the wrapped cylinders and control cylinders. The test results were compared with existing confinement models. It is found that the strength, ductility, and failure mode of FRP wrapped concrete cylinders depend on the fiber orientation and wall thickness. Fibers oriented at a certain angle in between the hoop direction and axial direction may result in strength lower than fibers along hoop or axial direction. A larger database is desired in order to refine the existing design-oriented confinement models.  相似文献   

16.
为研究原状海水海砂混凝土在复合管混凝土中的应用可行性,提出一种新型由内外壁纤维增强复合材料(FRP)和夹心钢管复合的碳纤维增强复合材料(CFRP)-钢复合管海水海砂混凝土柱结构。对12个新型CFRP-钢复合管海水海砂混凝土圆柱试件进行了轴压试验,研究了CFRP层数和核心混凝土强度等级变化对其轴压性能的影响。试验结果表明,内外壁CFRP的包裹能够有效地提高结构承载力和变形能力;CFRP-钢复合管海水海砂普通混凝土圆柱破坏形态为混凝土压溃,而CFRP-钢复合管海水海砂高强混凝土圆柱破坏形态为剪切破坏;结构的极限应力与CFRP层数、混凝土强度呈正相关,而极限应变随着CFRP层数增加而提高,却随着混凝土强度提高而减小;核心混凝土和钢管对极限应力的贡献随着CFRP层数增加基本不变,且当包裹两层及以上CFRP时,CFRP对试件极限应力的贡献占主导地位。   相似文献   

17.
M.N.S. Hadi   《Composite Structures》2006,72(4):503-511
Eccentric loads are common for columns in buildings and other types of structures. Columns that are in the border of buildings, especially corner columns and columns near opening are usually subject to a combination of axial load and bending moment, thus creating an equivalent eccentric load. Fibre Reinforced Polymers have been used in strengthening/retrofitting columns and other types of elements. The results by and large are satisfactory. Most of the research studies undertaken in strengthening columns are based on concentrically loaded columns. In effect, the behaviour of FRP wrapped columns under the influence of eccentric loading is less known compared to concentrically loaded columns. This paper presents results of testing six normal strength concrete columns under eccentric loading. The columns are wrapped with different number of layers of FRP. Results show that wrapping a column with an adequate number of FRP layers will result in higher strength, ductility and energy absorption than a column reinforced with steel bars.  相似文献   

18.
A new type of concrete columns was developed at the University of Alabama in Huntsville for new construction to achieve more durable and economical structures. The columns are made of concrete cores encased in a PVC tube reinforced with fiber reinforced polymer (FRP). The PVC tubes are externally reinforced with continuous impregnated fibers in the form of hoops at different spacings. The PVC acts as formwork and a protective jacket, while the FRP hoops provide confinement to the concrete so that the ultimate compressive strength and ductility of concrete columns can be significantly increased. The volume of fibers used in this hybrid column system is very modest compared to other existing confinement methods such as FRP tubes and FRP jackets. This paper discusses the stress-strain behavior of these new composite concrete cylinders under axial compression loading. Test variables include the type of fiber, volume of fiber, and the spacing between the FRP hoops. A theoretical analysis was performed to predict the ultimate strength, failure strain and the entire stress-strain curve of concrete confined with PVC-FRP tubes. Test results show that the external confinement of concrete columns by PVC-FRP tubes results in enhancing compressive strength, ductility and energy absorption capacity. A comparison between experimental and analytical results indicates that the models provide satisfactory predictions of ultimate compressive strength, failure strain and stress-strain response.  相似文献   

19.
通过12组72件喷射纤维/树脂复合材料(FRP)试样的拉伸强度试验,研究了纤维种类、树脂基体材料、纤维体积分数、纤维混杂比及纤维长度等因素对喷射FRP拉伸强度、弹性模量和断裂伸长率等性能的影响。通过8根钢筋混凝土(RC)柱试件的拟静力试验,研究了喷射玄武岩纤维/树脂复合材料(BFRP)和混杂玄武岩-碳纤维/树脂复合材料(BF-CFRP)加固震损RC柱的抗震性能,分析了喷射FRP层厚度、纤维混杂比、柱预损程度和柱轴压比等对加固试件的极限承载力、抗侧变形能力、刚度退化特征和滞回特性的影响。结果表明:玻璃纤维与乙烯基酯树脂基体的协同工作性能最优,而玄武岩纤维具有耐久性高、延性好、与乙烯基酯树脂基体协同工作性能好等优良性能,可以作为玻璃纤维的良好替代品;玄武岩纤维混杂少量比例的碳纤维作为树脂基体增强材料,可以有效提高喷射FRP的拉伸强度和变形性能;震损RC柱经喷射FRP加固后,可以基本恢复其震损前设计极限承载力,并有效提高其延性和耗能能力。该加固方法可以对地震区已震损RC柱进行快速加固,有效防止整体结构在余震中发生倒塌等严重破坏。   相似文献   

20.
组合FRP技术加固混凝土矩形柱的抗震性能试验研究   总被引:2,自引:0,他引:2  
刘涛  冯伟  张智梅 《工程力学》2007,24(6):128-133
研究了一种利用植筋及纤维增强复合材料(FRP)布横向包裹钢筋混凝土柱来改善其抗震性能的新型加固技术.通过5个钢筋混凝土方柱的模型试验,分别研究了植玻璃纤维(GFRP)筋、横向包裹碳纤维(CFRP)布及两者组合的加固技术对提高混凝土柱抗震性能的作用,分析讨论了不同加固方法对混凝土柱位移延性系数的提高、刚度退化及能量耗散能力的影响.试验结果表明,采用植GFRP筋和包裹CFRP布的组合加固技术较前两种加固方法能更加有效地改善钢筋混凝土柱的抗震性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号