首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the effects of post‐weld heat treatment on modification of microstructures and mechanical properties of friction stir welded and gas metal arc welded AA6061‐O plates were compared with each other. Gas metal arc welding and friction stir welding were used as the applicable welding processes for AA6061‐O alloys. The applied post‐weld heat treatment consisted of solution heat treatment, followed by water quenching and finally artificial aging. The samples were classified as post‐weld heat treated and as‐welded joints. The microstructural evolution, tensile properties, hardness features and fracture surfaces of both as‐welded and post‐weld heat treated samples were reported. The results clearly showed that friction stir welding process demonstrated better and more consistent mechanical properties by comparison with the gas metal arc welding process. The weld region of as‐welded samples exhibited a higher hardness value of 80 HV0.1 compared to the base material. In addition, the feasibility of post‐weld heat treatment in order to enhance the mechanical properties and to obtain more homogeneous microstructure of 6061‐O aluminum alloys was evaluated.  相似文献   

2.
Abstract

The present paper reports the influence of post-weld heat treatment (PWHT) on microstructure and properties of electron beam welded dissimilar joint. Ti2AlNb and TC11 alloys were used to fabricate the joints. Three PWHTs were applied to the welded joints. The structures were analysed using optical microscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy techniques. The results show that weld metal of the fusion zone is mainly composed of α2 and β phases. As the energy input increases under different PWHTs, the decomposition degree of metastable phases (α′/β) rises, but the tensile strength and impact toughness of the joint reduce. Under each condition, the tensile strength of the joint is higher than that of the TC11 base metal.  相似文献   

3.
Abstract

The effect of post-weld heat treatment (PWHT) on the tensile properties of friction stir welded (FSW) joints of 2219-T6 aluminium alloy was investigated. The PWHT was carried out at aging temperature of 165°C for 18 h. The mechanical properties of the joints were evaluated using tensile tests. The experimental results indicate that the PWHT significantly influences the tensile properties of the FSW joints. After the heat treatment, the tensile strength of the joints increases and the elongation at fracture of the joints decreases. The maximum tensile strength of the joints is equivalent to 89% of that of the base material. The fracture location characteristics of the heat treated joints are similar to those of the as welded joints. The defect free joints fracture in the heat affected zone on the retreating side and the joints with a void defect fracture in the weld zone on the advancing side. All of the experimental results can be explained by the hardness profiles and welding defects in the joints.  相似文献   

4.
The distribution of the residual stresses in laser beam welded SAE 4130 and the effect of stress relief after various post-weld heat treatments (PWHT) were measured by using the x-ray diffraction method. The mechanical properties and microstructure were also examined. Experimental results show that the tensile residua] stresses increased with the heat input of the laser beam. Most of the residual stresses were relieved by PWHT at 530°C for 2 hours followed by furnace cooling to 50°C. The strength of the as-welded samples decreased in comparison with the base metal. The yield strength of the weldment increased after PWHT at 320°C for 2 hours in comparison with the as-welded sample. The elogation of the laser beam welded samples increased after PWHT in comparison with the as-welded samples.  相似文献   

5.
Two different types of welds, Metal Inert Gas (MIG) and Friction Stir Welding (FSW), have been used to weld aluminum alloy 5083. The microstructure of the welds, including the nugget zone and heat affected zone, has been compared in these two methods using optical microscopy. The mechanical properties of the weld have been also investigated using the hardness and tensile tests. The results show that both the methods could successfully be used to weld such alloy. The strength of the joints is comparable to the strength of the base metal in both cases. However, FSWed samples have shown higher strength in comparison to the MIG samples. The results also show that the extension of the heat affected zone is higher in the MIG method in comparison to the FSW method. The weld metal microstructure of MIG welded specimen contains equiaxed dendrites as a result of solidification process during MIG welding while FSWed samples have wrought microstructures.  相似文献   

6.
The laser–tungsten inert gas hybrid welding method was adopted to realize the welding process between Q460 high-strength steel and 6061 aluminum alloy. The influence of the dual heat source on the mechanical properties and microstructure of the welded joints are discussed. In addition, the effects of including a copper–zinc interlayer on the microstructure, elemental distribution, and mechanical properties of welded joints are also studied. The results show that the mechanical properties of the welded joints are influenced by the relative heat inputs of the two heat sources and the Cu-Zn interlayer. The braze welded joint fabricated without a Cu-Zn interlayer fractured at an Al-Fe intermetallic compound (IMC) layer formed at the interface, whereas the braze welded joint fabricated with a Cu-Zn interlayer fractured at an Al-Cu IMC layer formed at the interface. Comparisons show that the maximum tensile shear load of the brazed welded joint with the Cu-Zn interlayer was increased by about 20% relative to that formed without the interlayer. The formation of Al-Fe IMC layer in the deep penetration joint was inhibited by the combined effect of the dual heating sources and the Cu-Zn interlayer.  相似文献   

7.
Abstract

A transition metal joint between type 304 stainless steel and 2·25Cr–1Mo steel, with Alloy 800 as the transition piece, is being developed for application in the steam generator circuit of the 500 MW prototype fast breeder reactor. As part of this programme, the hot cracking susceptibility of Inconel 82/182 and of 16–8–2 welding consumables were compared and the microstructure and mechanical properties of butt welds between type 304 stainless steel and Alloy 800, welded by the two consumables, were studied to select the appropriate welding consumables for this joint. It is recommended that the 16–8–2 consumable should be used for welding this joint because of its lower microfissuring tendency and reduced mismatch in the coefficient of thermal expansion across the joint, although this would mean a slight adverse effect on the elevated temperature mechanical properties. Further, to select the optimum post-weld heat treatment (PWHT) of the joint between Alloy 800 and 2·25Cr–1Mo steel, welded with Inconel 82/182 welding consumables, the effect of PWHT on the microstructure and mechanical properties was studied. Decreasing the PWHT temperature was found to improve the mechanical properties and the microstructural condition of this joint.

MST/842  相似文献   

8.
The microstructure and mechanical properties of pulse metal inert-gas(MIG) welded dissimilar joints between 4 mm thick wrought 6061-T6 and cast A356-T6 aluminum alloy plates were investigated. The tensile strength of the joints reached 235 MPa, which is 83% of that of 6061 aluminum alloy, and then decreased with the increase of travel speed while keeping other welding parameters constant. The microstructure, composition and fractography of joints were examined by the optical microscopy(OM),scanning electron microscopy(SEM) and electron probe microanalysis(EPMA). Grain boundary liquation and segregation occurred in the partially melted zone(PMZ) on 6061 aluminum alloy side, and brittle Fe-rich phases were observed in partially melted zone on A356 aluminum alloy side. The minimum microhardness appeared in heat-affected zone(HAZ) near A356 aluminum alloy substrate. The samples during tensile test failed mainly in PMZ and HAZ on A356 aluminum alloy side through mixed fracture mode with quasi cleavage and dimples on fracture surface.  相似文献   

9.
In this study, the effects of rotation speed and dwell time on the mechanical properties and microstructure of friction stir spot welded joints of dissimilar aluminum and titanium alloys were investigated. Aluminum AA6061 and titanium Ti-6Al-4 V alloys were selected as the work piece. The joint quality, mechanical behavior, and microstructural evolution in the welded regions were considerably affected by the welding parameters. The results of scanning electron microscopy showed the formation of Ti3Al intermetallic compounds near the thermomechanical affected zone, which significantly affected the properties of the welding joint. Maximum tensile shear load was produced at 1000 min−1 and 10 s dwell time. Moreover, the welding joint microhardness was improved with increasing the rotation speed.  相似文献   

10.
A high strength Al–Zn–Mg alloy AA7039 was friction stir welded by varying welding and rotary speed of the tool in order to investigate the effect of varying welding parameters on microstructure and mechanical properties. The friction stir welding (FSW) process parameters have great influence on heat input per unit length of weld, hence on temperature profile which in turn governs the microstructure and mechanical properties of welded joints. There exits an optimum combination of welding and rotary speed to produce a sound and defect free joint with microstructure that yields maximum mechanical properties. The mechanical properties increase with decreasing welding speed/ increasing rotary speed i.e. with increasing heat input per unit length of welded joint. The high heat input joints fractured from heat affected zone (HAZ) adjacent to thermo-mechanically affected zone (TMAZ) on advancing side while low heat input joints fractured from weld nugget along zigzag line on advancing side.  相似文献   

11.
马龙  吴恒 《精密成形工程》2022,14(10):113-119
目的 采用光纤激光对ZK镁合金进行焊接,分析焊接工艺参数对焊接接头性能的影响规律。方法 采用正交实验方法,在焊接过程中对焊接主要的工艺参数比如:激光的功率,焊接的速度,离焦量进行三因素三水平正交实验,采用拉力实验机对焊接接头进行抗拉强度测试,得到抗拉强度最大的工艺参数组合。对焊缝微观组织及断口形貌进行分析。结果 当激光功率为1 400 W、焊接速度为40 mm/s、离焦量为3 mm时,焊缝抗拉强度达到最高的308 MPa,达到母材抗拉强度的95%。结论 在合适的工艺条件下,光纤激光焊接过程中,如果热输入较低,焊接速度过快,导致熔池冷却速度非常快,同时细化了晶粒,提高焊缝接头的综合力学性能。  相似文献   

12.
AA6061 aluminium alloy (Al-Mg-Si alloy) has gathered wide acceptance in the fabrication of light weight structures requiring a high strength-to-weight ratio and good corrosion resistance. Compared to many of the fusion welding processes that are routinely used for joining structural aluminium alloys, the Friction Stir Welding (FSW) process is an emerging solid state joining process in which the material that is being welded does not melt and recast. This process uses a nonconsumable tool to generate frictional heat in the abutting surfaces. The welding parameters such as tool rotational speed, welding speed, axial force, etc., and tool pin profile play a major role in deciding the joint properties. In this investigation, an attempt has been made to study the effect of rotational speed and tool pin profile on mechanical properties of AA6061 aluminium alloy. Five different tool pin profiles (straight cylindrical, tapered cylindrical, threaded cylindrical, triangular, and square) have been used to fabricate the joints at five different tool rotational speeds (800-1600 RPM). Tensile properties, microhardness, and microstructure of the joints have been evaluated. From this investigation it is found that the joints fabricated using square pin profiled tool with a tool rotational speed of 1200 RPM exhibited superior mechanical properties compared to other joints.  相似文献   

13.
目的在保证搅拌速度一定时,针对8 mm厚的7A52铝合金,在不同焊接速度下采用搅拌摩擦焊(FSW)进行焊接试验,研究其焊接接头的显微组织及力学性能。方法利用搅拌摩擦焊机进行对接焊接,焊后制取金相试样观察焊接接头宏观形貌和显微组织,并测定其力学性能。结果7A52铝合金FSW焊接接头焊核区的面积随着焊接速度的增大而增大,当焊接速度为250mm/min时,焊接接头的焊核区面积最大,焊核区的显微组织都为细小的等轴晶,焊接接头横截面的焊核区呈明显"洋葱环"的形貌,而热力影响区的结构特征则呈现出了较高的塑性变形流线层。焊接接头显微硬度分布都呈现出"W"形变化,在焊接速度为150 mm/min时,焊接接头的平均抗拉强度能达到452 MPa,达到了母材抗拉强度的89%。结论通过对不同焊接速度下7A52铝合金FSW焊接接头的组织和性能进行研究,得到了不同焊接速度下焊接接头组织和力学性能。  相似文献   

14.
In this work, thermo-mechanical behavior and microstructural evolution in similar and dissimilar friction stir welding of AA6061-T6 and AA5086-O have been investigated. Firstly, the thermo-mechanical behaviors of materials during similar and dissimilar FSW operations have been predicted using three-dimensional finite element software, ABAQUS, then, the mechanical properties and the developed microstructures within the welded samples have been studied with the aid of experimental observations and model predictions. It is found that different strengthening mechanisms in AA5086 and AA6061 result in complex behaviors in hardness of the welded cross section where the hardness variation in similar AA5086-O joints mainly depends on recrystallization and generation of fine grains in weld nugget, however, the hardness variations in the weld zone of AA6061/AA6061 and AA6061/AA5086 joints are affected by subsequent aging phenomenon. Also, both experimental and predicted data illustrate that the peak temperature in FSW of AA6061/AA6061 is the highest compared to the other joints employing the same welding parameters.  相似文献   

15.
Cold metal transfer (CMT) welding has been successfully used to weld dissimilar metals widely. However, a few investigations were carried out on the lap welding of commercially pure titanium TA2 to pure copper T2 with ERCuNiAl copper wire by CMT technique. In this paper, the affected mechanism of lapped location between the two metals on the microstructure and tensile shear strength of joints was revealed. The results indicated that satisfactory lapped joints between commercially pure titanium TA2 and pure copper T2 could be achieved by CMT welding method. A layer of intermetallic compounds (IMCs), i.e. Ti2Cu, TiCu and AlCu2Ti presented in titanium-weld interface, and the weld metal was composed of α-Cu solid solution and Ti–Cu–Al–Ni–Fe multi-phase. The two joints had almost same tensile shear strength, 192.5–197.5 N/mm, and fractured in the heat affected zone (HAZ) of Cu with plastic fracture mode during tensile shear tests.  相似文献   

16.
Dissimilar AA6061 and AA7075 alloy have been friction stir welded with a variety of different process parameters. In particular, the effects of materials position and welding speed on the material flow, microstructure, microhardness distribution and tensile property of the joints were investigated. It was revealed that the material mixing is much more effective when AA6061 alloy was located on the advancing side and multiple vortexes centers formed vertically in the nugget. Three distinct zones with different extents of materials intercalations were identified and the formation mechanism of the three zones was then discussed. Grain refinement was observed in all three layers across the nugget zone with smaller grains in AA7075 Al layers. All the obtained joints fractured in the heat-affected zone on the AA6061 Al side during tensile testing, which corresponds very well to the minimum values in microhardness profiles. It was found that the tensile strength of the dissimilar joints increases with decreasing heat input. The highest joint strength was obtained when welding was conducted with highest welding speed and AA6061 Al plates were fixed on the advancing side. To facilitate the interpretation, the temperature history profiles in the HAZ and at zones close to TMAZ were also measured using thermocouple and simulated using a three-dimensional computational model.  相似文献   

17.
Mechanical properties and microstructure of friction stir-welded AZ31 based on variety post-weld heat treatment (PWHT) temperatures were evaluated, and an optimal PWHT condition was identified. At rotational speed of 1200?rev?min?1 and welding speed of 300?mm?min?1, the average yield tensile, tensile strength and elongation of friction stir-welded joints was 92.5?MPa, 199.1?MPa and 7.3%, respectively. It was found that (300°C – 1?h) heat treatment after welding was more beneficial than other heat treatments in enhancing the mechanical properties and homogenising grain size. The maximum yield and tensile strength was 139.9 and 238.4?MPa, respectively, tensile longitudinal and compressive transverse residual stress could be effectively eliminated, and the fatigue strength increased 34.2% comparing with as-welded joints.  相似文献   

18.
The microstructure and properties of aluminium–zinc coated steel lap joints made by a modified metal inert gas CMT welding–brazing process was investigated. It was found that the nature and the thickness of the high-hardness intermetallic compound layer which formed at the interface between the steel and the weld metal during the welding process varied with the heat inputs. From the results of tensile tests, the welding process is shown to be capable of providing sound aluminium–zinc coated steel joints.  相似文献   

19.
目的 采用搅拌摩擦焊,对比分析大气环境和水下环境下铝/铜接头的组织与性能,以期获得力学性能更优异的铝/铜焊接接头。方法 利用搅拌摩擦焊,在焊接速度为40 mm/min、旋转速度为1 000 r/min的条件下,分别在大气环境和水下环境下对厚度为9 mm的6061铝合金板和T2纯铜板进行焊接。然后,对铝/铜界面、焊核区进行扫描电镜及能谱分析,并对铝/铜界面及焊核区进行物相分析,确定产物相组成。最后,对铝/铜试样进行拉伸及硬度检测。结果 铝/铜接头均无裂纹、气孔等缺陷。铜颗粒弥散分布在焊核区,铝/铜界面形成金属间化合物层。水下搅拌摩擦焊下界面元素扩散距离明显变短,且金属间化合物厚度更薄。铝/铜接头的金属间化合物为AlCu和Al4Cu9。大气环境焊接下接头的抗拉强度为130.6 MPa,断裂方式为脆性断裂;水下焊接下接头的抗拉强度为199.5 MPa,断裂方式为韧性断裂。水下环境下的接头硬度值更高,其中热影响区的硬度最低值约为65HV。结论 水下搅拌摩擦焊铝/铜接头无裂纹、气孔等缺陷。组织上,水下搅拌摩擦焊的铝/铜接头界面元素扩散距离更短,硬脆的金属间化合物更少;性能上,水下搅拌摩擦焊的铝/铜接头强度更高,抗拉强度达到199.5 MPa,达到母材的74.4%。  相似文献   

20.
倪晋尚 《精密成形工程》2023,15(10):177-186
目的 针对汽车高强钢SG1000焊接接头恶化等问题,研究了SG1000激光复合焊接的力学性能。方法 选用等强匹配焊丝MG90-G对高强钢SG1000进行激光复合焊接,对焊接接头进行拉伸和低温冲击韧性试验,并结合扫描和硬度监测等手段对焊缝组织和断口形貌进行分析。结果 由于激光的预热作用,高强钢SG1000激光复合焊接成形件的焊缝美观,焊接过程稳定可靠,焊接熔池深度较大,有效改善了传统焊接的咬边、飞溅、气孔等缺陷。焊缝组织主要由板条马氏体和奥氏体晶粒组成,热影响区的过热区内部板条马氏体和奥氏体晶粒比较粗大,而焊接母材主要为细小的板条马氏体和奥氏体晶粒。焊接拉伸断口主要为细小且较浅的韧窝,且韧窝底部存在第二相粒子及夹杂物,焊接拉伸断口断裂于热影响区且微观形貌为韧性断裂;冲击微观形貌主要由准解理小平面及河流花样组成,且存在一定数量大小不一的韧窝交错分布,焊接冲击断口断裂于热影响区且微观形貌也为韧性断裂。结论 焊缝热影响区的晶粒比非热影响区的晶粒粗大,拉伸和冲击断裂均发生于热影响区;随着激光功率的增大,复合焊接接头的力学性能呈现逐渐增强的趋势;随着焊接速度的增大,复合焊接接头的力学性能呈现先增强后削弱的趋势。高强钢SG1000激光复合焊接最佳工艺参数如下:激光功率为9.5 kW,焊接速度为0.8 m/min,对应屈服强度为1 072 MPa,抗拉强度为1 175 MPa,断裂伸长率为13.5%,冲击断裂吸收的能量为30.8 J、焊缝中心显微硬度为342 HV。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号