首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamic response of monolithic and sandwich beams made from stainless steel is determined by loading the end-clamped beams at mid-span with metal foam projectiles. The sandwich beams comprise stainless-steel pyramidal cores (with no axial stretch resistance), stainless-steel corrugated cores (with a high stretch resistance) and an aluminium alloy metal foam. High-speed photography is used to measure the transient transverse deflection of the beams. The resistance to shock loading is measured by the permanent transverse deflection at the mid-span of the beams for a fixed magnitude of projectile momentum and mass of beam. It is found that the sandwich beam with the pyramidal core was the weakest of the sandwich beams, but all sandwich beams had a higher shock resistance, then the monolithic beam. For each type of beam, the dependence of transverse deflection upon the magnitude of the projectile momentum is measured. A comparison of the measurements is made with analytical predictions for both impulsive and finite pressure loading. It is found that the impulsive loading analysis over-predicts the deflections of both the monolithic and sandwich beams. The finite pressure analysis, which considers the transient nature of the loading pressure provided by the foam projectile, can accurately predict the measured transverse deflection.  相似文献   

2.
The dynamic response of end-clamped monolithic beams and sandwich beams has been measured by loading the beams at mid-span using metal foam projectiles. The AISI 304 stainless-steel sandwich beams comprise two identical face sheets and either prismatic Y-frame or corrugated cores. The resistance to shock loading is quantified by the permanent transverse deflection at mid-span of the beams as a function of projectile momentum. The prismatic cores are aligned either longitudinally along the beam length or transversely. It is found that the sandwich beams with a longitudinal core orientation have a higher shock resistance than the monolithic beams of equal mass. In contrast, the performance of the sandwich beams with a transverse core orientation is very similar to that of the monolithic beams. Three-dimensional finite element (FE) simulations are in good agreement with the measured responses. The FE calculations indicate that strain concentrations in the sandwich beams occur at joints within the cores and between the core and face sheets; the level of maximum strain is similar for the Y-frame and corrugated core beams for a given value of projectile momentum. The experimental and FE results taken together reveal that Y-frame and corrugated core sandwich beams of equal mass have similar dynamic performances in terms of rear-face deflection, degree of core compression and level of strain within the beam.  相似文献   

3.
《Composites Part B》2013,45(1):330-338
The dynamic response of clamped shallow sandwich arches with core of aluminum foam has been experimentally studied by impacting the arches at mid-span with metal foam projectiles. The resistance to shock loading is measured by the permanent transverse deflection at mid-span of the arches. The deformation mechanisms of shallow sandwich arches were investigated. In addition, the deformation/failure modes of the shallow sandwich arch were classified and analyzed systematically. The effects of initial projectile momentum, face sheet thickness, core thickness and radius of curvature on the structural response were obtained. The results indicated that permanent deflection at mid-span can be efficiently controlled by increasing face sheet thickness, core thickness or appropriately increasing curvature. Meanwhile, shock resistance of the shallow sandwich arch can also be improved. The experimental results are useful in the optimum design of cellular metallic sandwich structures.  相似文献   

4.
为考查泡沫铝夹芯梁面板材料对其抗冲击性能的影响,运用数值模拟方法计算了相同重量下面板材料分别为304#不锈钢、工业纯铝和HRB335级钢三种泡沫铝夹芯梁在不同冲量作用下的动力响应;分析了面板材料对泡沫铝夹芯梁跨中变形及芯材压缩应变的影响.结果显示,在冲量相同的情况下,面板材料对泡沫铝夹芯梁的抗冲击性能有一定的影响;爆炸...  相似文献   

5.
泡沫铝夹芯梁抗爆性能的数值模拟分析   总被引:2,自引:1,他引:1  
康建功  石少卿  刘颖芳  汪敏 《爆破》2009,26(3):10-13
运用有限元软件LS-DYNA分析重量相同的2种材料梁在爆炸荷载作用下的动力响应,其中一种由304#不锈钢面板与泡沫铝芯材复合而成的夹芯梁,另一种由304#不锈钢单一材料制成的实体梁.对比了相同重量2种梁在跨中位移的变化情况,并将泡沫铝夹芯梁的计算结果与文献实验数据作了对比分析.结果显示,在冲量分别为1.83 kNs/m2、3.77 kNs/m2、6.08 kNs/m2及7.0 kNs/m2动荷载作用下,304#不锈钢实体梁的跨中位移分别是304#不锈钢面板泡沫铝夹芯梁跨中位移的1.1倍、1.35倍、1.26倍及1.14倍.由此可知,相同重量304#不锈钢面板泡沫铝夹芯梁较304#不锈钢实体梁具有更好抵抗爆炸荷载作用的能力.  相似文献   

6.
Facing compressive failure, facing wrinkling and core shear failure are the most commonly encountered failure modes in sandwich beams with facings made of composite materials. The occurrence and sequence of these failure modes depends on the geometrical dimensions, the form of loading and type of support of the beam. In this paper the above three failure modes in sandwich beams with facings made of carbon/epoxy composites and cores made of aluminum honeycomb and two types of foam have been investigated. Two types of beams, the simply supported and the cantilever have been considered. Loading included concentrated, uniform and triangular. It was found that in beams with foam core facing wrinkling and core shear failure occur, whereas in beams with honeycomb core facing compressive failure and core shear crimping take place. Results were obtained for the dependence of failure mode on the geometry of the beam and the type of loading. The critical beam spans for failure mode transition from core shear to wrinkling failure were established. It was found that initiation of a particular failure mode depends on the properties of the facing and core materials, the geometrical configuration, the type of support and loading of sandwich beams.  相似文献   

7.
This paper reports on an investigation into the behaviour of circular sandwich panels with aluminium honeycomb cores subjected to air blast loading. Explosive tests were performed on sandwich panels consisting of mild steel face plates and aluminium honeycomb cores. The loading was generated by detonating plastic explosives at a pre-determined stand-off distance. Core height and face plate thickness were varied and the results are compared with previous experiments. It was observed that the panels exhibited permanent face plate deflection and tearing, and the honeycomb core exhibited crushing and densification. It was found that increasing the core thickness delayed the onset of core densification and decreased back plate deflection. Increasing the plate thickness was also found to decrease back plate deflection, although the panels then had a substantially higher overall mass.  相似文献   

8.
为研究铝合金蜂窝夹层板水下爆炸冲击波载荷作用的动态响应及抗冲击性能,利用非药式水下爆炸冲击波加载装置对气背固支5A06铝合金夹层板及具有相同面密度的单层板进行水下冲击波加载试验。利用高速相机结合三维数字散斑技术(DIC)对夹层板后面板动态响应进行实时测量,获得夹层板气背面受水下冲击波作用的动态响应历程及变形毁伤模式,比较分析铝合金蜂窝夹层板抗冲击防护性能。结果表明,较相同面密度的单层板,蜂窝夹层板受水下冲击波载荷作用的芯层压缩能有效减少气背面板的塑性变形,提高夹层结构整体抗冲击性能。  相似文献   

9.
The dynamic response of clamped sandwich beam with aluminium alloy open-cell foam core subjected to impact loading is investigated in the paper. The face sheet and the core of the sandwich beam have the different thickness. And the sandwich beam is impacted by a steel projectile in the mid-span. The impact force is recorded by using accelerometer. The results show that tensile crack and core shear are the dominant failure modes. And the impact velocity and the thickness of the face sheet and the foam core have a significant influence on the failure modes and the impact forces. Combining with the inertia effect and experimental results, the failure mechanisms of the sandwich beams are discussed. The thickness of the foam core plays an important role in the failure mechanism of the sandwich beam. In present paper, the failure of the sandwich beam with a thin core is dominated by the bending moment, while the sandwich beam with a thick core fails by bending deformation in the front face sheet and the bottom face sheet in opposite direction due to the plastic hinges in the front face sheet.  相似文献   

10.
A theoretical solution is obtained to predict the dynamic response of peripherally clamped square metallic sandwich panels with either honeycomb core or aluminium foam core under blast loading. In the theoretical analysis, the deformation of sandwich structures is separated into three phases, corresponding to the transfer of impulse to the front face velocity, core crushing and overall structural bending/stretching, respectively. The cellular core is assumed to have a progressive crushing deformation mode in the out-of-plane direction, with a dynamically enhanced plateau stress (for honeycombs). The in-plane strength of the cellular core is assumed unaffected by the out-of-plane compression. By adopting an energy dissipation rate balance approach developed by earlier researchers for monolithic square plates, but incorporating a newly developed yield condition for the sandwich panels in terms of bending moment and membrane force, “upper” and “lower” bounds are obtained for the maximum permanent deflections and response time. Finally, comparative studies are carried out to investigate: (1) influence of the change in the in-plane strength of the core after the out-of-plane compression; (2) performances of a square monolith panel and a square sandwich panel with the same mass per unit area; and (3) analytical models of sandwich beams and circular and square sandwich plates.  相似文献   

11.
The aim of this paper is the fabrication and mechanical testing of entangled sandwich beam specimens and the comparison of their results with standard sandwich specimens with honeycomb and foam as core materials. The entangled sandwich specimens have glass fiber cores and glass woven fabric as skin materials. The tested glass fiber entangled sandwich beams possess low compressive and shear modulus as compared to honeycomb and foam sandwich beams of the same specifications. Although the entangled sandwich beams are heavier than the honeycomb and foam sandwich beams, the vibration tests show that the entangled sandwich beams possess higher damping ratios and low vibratory levels as compared to honeycomb and foam sandwich beams, making them suitable for vibro-acoustic applications where structural strength is of secondary importance, e.g., internal paneling of a helicopter.  相似文献   

12.
Sandwich panels constructed from metallic face sheets with the core composed of an energy absorbing material, have shown potential as an effective blast resistant structure. In the present study, air-blast tests are conducted on sandwich panels composed steel face sheets with unbonded aluminium foam (Alporas, Cymat) or hexagonal honeycomb cores. Honeycomb cores with small and large aspect ratios are investigated. For all core materials, tests are conducted using two different face sheet thicknesses. The results show that face sheet thickness has a significant effect on the performance of the panels relative to an equivalent monolithic plate. The Alporas and honeycomb cores are found to give higher relative performance with a thicker face sheet. Under the majority of the loading conditions investigated, the thick core honeycomb panels show the greatest increase in blast resistance of the core materials. The Cymat core panels do not show any significant increase in performance over monolithic plates.  相似文献   

13.
Finite element calculations are reported for the dynamic shock response of fully clamped monolithic and sandwich beams, with elastic face sheets and a compressible elastic–plastic core. Predictions of the peak mid-span deflections and deflected shapes of the beams are compared with the previously reported measured response of end-clamped sandwich beams, made from face sheets of glass fibre reinforced vinyl ester and a core of PVC foam or balsa wood [1]. Good agreement is observed, and the maximum sustainable impulse is also predicted adequately upon assuming a tensile failure criterion for the face sheets. The finite element calculations can also be used to bound the response by considering the extremes of a fully intact core and a fully damaged core. It is concluded that the shock resistance of a composite sandwich beam is maximised by selecting a composite with fibres of high failure strain.  相似文献   

14.
通过有限元数值模拟方法,对方孔蜂窝夹层板在爆炸冲击载荷下的变形机理和吸能特性进行了分析。在单位面积质量以及夹层板芯层薄壁间距、高度给定的情况下,通过对不同夹芯层相对密度下夹层板的吸能率以及上、下面板最大变形的比较,得出了最优的夹芯层相对密度。在此相对密度下,夹芯层吸能率最高,下面板变形最小,夹层板的抗冲击性能最优。同时还讨论了夹层板芯层薄壁间距、厚度、高度以及面板厚度对其各部分吸能率的影响,以得到最优化的夹层板结构。  相似文献   

15.
提出了利用厚度剪切压电效应的压电复合材料(PCM TS) 作为夹芯结构芯材的新型驱动方式, 分析了PCM TS 的驱动原理。针对含有1-3 型PCM TS 芯材的夹芯梁结构, 实验研究了PCM TS 在静电场作用下的驱动特性, 并利用PCM TS 芯材对夹芯梁的振动进行了主动控制实验。结果表明, 利用PCM TS 作为驱动元件, 夹芯梁获得了比较理想的变形量, 其振动也能得到较为有效的控制, 因此是一种很有应用前途的驱动方式。   相似文献   

16.
泡沫铝层合梁的三点弯曲变形   总被引:20,自引:0,他引:20  
研究了泡沫铝层合梁三点弯曲的载荷(P)-位移(δ)曲线、变形过程及面板破坏、夹芯剪切破坏、凹陷破坏等破坏模式。用极限载荷公式得到的计算值与实验值符合良好。实验所得的加载和卸载刚度(P/δ)与计算结果吻合较好。泡沫铝层合梁具有较低的密度((0.42~0.92)×10~3kg/m~3)和很高的弯曲比刚度(E~(1/2)/ρ)。利用极限载荷公式建立了破坏模式图。  相似文献   

17.
蜂窝金属及其夹芯结构是一种物理功能与结构一体化的新型轻质高强结构,广泛应用于结构轻量化与碰撞冲击防护领域。采用ABAQUS非线性有限元软件建立了蜂窝金属夹芯板(honeycomb sandwich panel,HSP)结构动态冲击数值仿真模型,数值仿真计算结果与文献实验结果吻合较好,验证了数值仿真模型的正确性。在此基础上,开展了重复冲击载荷作用下蜂窝金属夹芯板结构动态响应研究,得到了重复冲击力时程曲线、动态变形时程曲线、冲击力位移曲线以及最终挠度,分析了冲击能量、蜂窝壁厚以及上、下面板厚度分配对蜂窝金属夹芯板结构重复冲击动态响应的影响规律。研究结果表明,重复冲击载荷作用下蜂窝金属夹芯板结构上、下面板弯曲变形以及蜂窝芯层压缩变形逐渐积累,蜂窝芯层薄壁结构逐渐达到密实化,结构抗弯刚度逐渐上升,变形增量逐渐减小,结构整体能量吸收率下降。通过调节蜂窝壁厚和上、下面板厚度分配可以显著调节蜂窝金属夹芯板结构重复冲击动态响应与能量吸收性能。  相似文献   

18.
鉴于泡沫铝材料优异的吸能特性和夹层结构在强度、刚度上的优势,提出了分层结构为钢板-泡沫铝芯层-钢板的抗爆组合板。对厚度为10 cm、7 cm和5 cm的组合板进行了5组不同装药量的爆炸试验,考察了各板在不同装药量爆炸条件下的变形及破坏情况,并对变形破坏过程进行了理论分析。研究表明:组合板承受爆炸冲击荷载时,通过局部压缩变形和整体弯曲变形吸收能量。钢板相同时,适当增大泡沫铝芯层厚度,增强面板与芯层间连接,可提高该组合板的抗爆性能,防止组合板发生剥离,减小其承受爆炸冲击荷载时产生的变形。  相似文献   

19.
Design of sandwich structures for concentrated loading   总被引:1,自引:0,他引:1  
While sandwich construction offers well-known advantages for high stiffness with light weight, the problem of designing the sandwich structure to withstand localized loading, such as from accidental impact, remains an important problem. This problem is more difficult with lower stiffness cores, such as expanded foam. In the present study, experiments have been carried out on foam core sandwich beams with carbon/epoxy faces, under conditions of concentrated loading. The variables considered were the density of the foam and the relative thickness of the core. The common failure modes of sandwich structures were observed, including core failure in compression and shear, delamination, and fiber failure in the faces. These failure modes were systematically related to the test variables by means of a detailed stress analysis of the specimen, and a consideration of the failure properties of the constituent materials. The loading is characterized by localized high stress and strain concentrations that are not predicted in first-order shear deformation sandwich beam theory. The three-dimensional elasticity solution of Pagano was used to obtain the stress distributions. The strength prediction requires a detailed consideration of the localized nature of the loading, including the effects of strain gradients in the faces. The results show that failure modes and load levels can be predicted for sandwich structures under concentrated loading, but that accurate predictions require a consideration of the details of the concentrated loading. The results have a direct application in predicting the ability of sandwich structures to withstand localized loading such as from accidental impact.  相似文献   

20.
以泡沫铝为夹芯材料,玄武岩纤维(BF)和超高分子量聚乙烯纤维(UHMWPE)复合材料为面板,制备夹层结构复合材料。研究纤维类型、铺层结构和芯材厚度对泡沫铝夹层结构复合材料冲击性能和损伤模式的影响规律,并与铝蜂窝夹层结构复合材料性能进行对比分析。结果表明:BF/泡沫铝夹层结构比UHMWPE/泡沫铝夹层结构具有更大的冲击破坏载荷,但冲击位移和吸收能量较小。BF和UHMWPE两种纤维的分层混杂设计比叠加混杂具有更高的冲击破坏载荷和吸收能量。随着泡沫铝厚度的增加,夹层结构复合材料的冲击破坏载荷降低,破坏吸收能量增大。泡沫铝夹层结构比铝蜂窝夹层结构具有更高的冲击破坏载荷,但冲击破坏吸收能量较小;泡沫铝芯材以冲击部位的碎裂为主要失效形式,铝蜂窝芯材整体压缩破坏明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号