首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Two-dimensional, plane strain, finite element analyses of strength-mismatched welded joints have been performed using the modified boundary layer formulation. The welds were idealized as two-material joints with the material interface running parallel to the crack, which was embedded in the weld material. The Rousselier ductile damage model was employed within the weld material to simulate crack extension due to the growth and coalescence of microvoids. By analysing models with different levels of material mismatching, weld dimensions and applied T -stress levels, it was possible to analyse the effects of crack tip constraint due to both material mismatching and specimen geometry on the fracture resistance of the weld material.
The results show that material strength overmatching (where the weld material is stronger than the base material) reduces the level of constraint ahead of the crack, which can increase the resistance to fracture of the weld material. Conversely, material strength undermatching increases crack tip constraint, reducing the fracture resistance of the joint. By employing estimates for the crack tip constraint levels, Q M , based on the applied load, level of material mismatching and weld region thickness, it has been possible to 'order' the J– resistance curves of overmatched joints by generating a family of J–Q M loci which describe the effects of constraint on the fracture resistance of the weld material. However, it is shown that the Q M-stress parameter is not capable of describing the effect of material strength undermatching on the fracture resistance of a joint, which can be much lower than that obtained from a high-constraint homogeneous specimen of weld material.  相似文献   

2.
钱辉  李宗翱  裴金召  康莉萍 《工程力学》2020,37(11):135-145
为提高框架结构的耗能能力和自恢复能力,提出了基于超弹性SMA筋的功能自恢复梁柱节点。基于OpenSees有限元软件平台,采用SMA材料自复位双旗形本构模型,建立了自复位SMA筋混凝土梁柱节点有限元数值模型,进行了低周往复作用下有限元模拟,得出节点的滞回曲线与骨架曲线。通过与现有试验结果的对比,验证了节点分析模型的有效性。进行了参数分析,分别考虑了SMA材料的配置数量、配置长度和屈服强度等参数,分析了SMA材料参数对节点的滞回性能和自复位能力等性能的影响。结果表明:超弹性SMA筋混凝土梁柱节点具有较高的耗能能力和自复位能力。建立的数值分析模型能较好地模拟自复位SMA筋节点在低周往复荷载作用力下的“双旗形”滞回性能。SMA筋材力学参数对节点抗震性能有较大影响:在适筋条件下,SMA配置数量越大,残余位移越小,复位能力越强;相同条件下,SMA筋超过塑性铰长度后,对节点性能影响不大;适筋条件下,提高SMA筋的屈服强度会提高节点的承载能力以及自复位能力。  相似文献   

3.
目的提高6061铝合金搅拌摩擦焊接头的质量,确定合适的工艺参数范围。方法设计3种不同的搅拌头进行焊接,分析接头拉伸强度与组织性能,并根据试验结果建立工艺窗口,选择合适的轴肩尺寸及工艺参数范围。结果随着轴肩尺寸减小,焊缝宽度、金属流动性、热力影响区面积均减小,在较大的焊接速度及较小的搅拌头转速下,焊缝底部出现缺陷;采用轴肩直径小的搅拌头进行焊接,在一定焊接参数范围内,焊接接头的拉伸强度得到提高;随着轴肩直径减小,焊核区晶粒组织细化,材料变形程度减小;由建立的工艺窗口可知,当轴肩尺为9 mm时,可选择的参数范围最大。结论焊接时采用小尺寸轴肩,可以在搅拌头行走速度更低、转速更大的情况下,仍然可以保持合理产热量,使接头性能得到提高。  相似文献   

4.
The optimum joining parameters for the friction joining of aluminium-based metal–matrix composite (MMC) materials are examined. The properties of MMC/MMC, MMC/alloy 6061 and alloy 6061/alloy 6061 joints are derived following detailed factorial experimentation. The mechanical properties of the joints are evaluated using a combination of notch tensile testing and also conventional tensile and fatigue testing. The frictional pressure has a statistically-significant effect on the notch tensile strength of joints produced in all base material combinations. The upset pressure has only a statistically-significant influence on the notch tensile strength properties of alloy 6061/alloy 6061 joints. The notch tensile strengths of MMC/alloy 6061 joints are significantly lower than MMC/MMC and alloy 6061/alloy 6061 joints for all joining parameter settings. The fatigue strength of MMC/MMC joints and alloy 6061/6061 joints are also poorer than the as-received base materials. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

5.
Abstract

Two experimental weld joints, a similar weld joint of 9Cr–1Mo steel and a dissimilar weld joint of 9Cr–1Mo and 2.25Cr–1Mo steels, were fabricated by the TIG+E method and post-weld heating was applied. Creep testing was carried out at temperatures ranging from 525 to 625°C in the stress range 40–240 MPa. Creep rupture strength was evaluated using the Larson–Miller parameter. Extended metallography including transmission electron microscopy was performed and critical zones were indicated where fractures were concentrated during the creep exposure. At high temperatures rupture of the dissimilar weldment occurred in the heat affected zone (HAZ) of the weld metal while rupture of the similar weldment was located in the HAZ of the parent material. The processes of recovery seem to be the main causes of decrease in creep rupture strength of both weld joints in comparison to the parent materials.  相似文献   

6.
NiTi is an increasingly applied material in industrial applications. However, the difficulties faced when welding and joining is required, limits its broader use in the production of complex shaped components. The main weldability problems associated with NiTi are: strength reduction, formation of intermetallic compounds, modification of phase transformation and transformation temperatures, as well as, changes in both superelastic and shape memory effects. Additionally, NiTi is envisaged to be joined to other materials, in dissimilar joints with more complex problems depending on the other base material. Thus, intensive research in welding and its effects on the joints performance has been conducted since the early stages of NiTi. This paper presents a detailed review of welding and joining processes applied to NiTi, in similar and dissimilar combinations considering both fusion and solid-state processes. Since laser is the most studied and applied welding process, a special section is devoted to this technique.  相似文献   

7.
作为替代连接技术,压印和粘接表现出独特的优势。以压印和压印-粘接复合接头为对象,采用数理统计分析检验试验数据的合理性,进而对比不同材料组合及连接方式来分析粘接剂对压印连接接头强度的影响。试验表明,压印连接的剪切强度比剥离强度高,异种材料组合、压印-粘接复合能获得更有效的连接结构;胶层厚度为0.1mm时获得较好效果。  相似文献   

8.
Traditional timber engineering design approaches use for simple geometries stress- or strain-based criteria for strength analyses. For more complex cases purely empirical methods are also used. Although practical, purely empirical methods are not general, and could lead to estimations on the unsafe side, if extrapolated outside their original scope. It is furthermore known that stress- or strain-based methods are not useful in situations where large stress or strain concentrations arise, such as close to holes or notches, in dowel joints or in glued joints. Furthermore, such phenomena like size effects cannot be predicted, unless stochastic methods are introduced. The paper discusses some fracture mechanics strength analysis methods that in recent years have been proposed in relation to timber engineering strength design. The methods discussed range from simple hand calculations based on linear elastic fracture mechanics and useful for simple geometries to finite element analyses for general cases taking into account non-linear performance of the material during fracture. Fracture mechanics results in rational strength design, which is based on mechanics, as opposed to purely empirical methods, and with parameters with a clear physical meaning. In order to obtain material characteristics needed for this approach examples of test methods are discussed. Application examples include structural components, dowel joints and adhesive joints. Design formulae for beams with notches at the support and for the pull out strength of glued-in rods are presented.  相似文献   

9.
The weld thinning phenomenon occurring in conventional friction stir welding (C-FSW) has negative effects on the formation quality and serviceable reliability of FSW joints. The existing methods for solving the weld thinning problem in FSW exhibit some universal deficiencies, such as low efficiency, low quality and narrow applicable range. Motivated by this challenge, a novel non-weld-thinning (NWT) FSW process, during which a zero shoulder plunge depth is applied to the welding tool, is proposed and investigated in the present paper. The results indicate that the high quality NWT-FSW joints can be efficiently produced by using this novel process. Microstructural analysis implies that the grains in weld nugget of NWT-FSW joints present smaller size and a more uniformly distributed feature than those of C-FSW joints. Compared with the C-FSW joints, the NWT-FSW joints are characterized by narrower softening regions and higher minimum hardness values, leading to an increase in tensile strength during tensile test. The temperature history analysis suggests that the thermal effect of tool shoulder is effectively controlled during NWT-FSW due to the application of zero shoulder plunge depth, which is the intrinsic reason for the grain refinement and strength improvement of NWT-FSW joints.  相似文献   

10.
邢保英  何晓聪  严柯科 《材料导报》2012,26(8):117-120,128
以自冲铆接和自冲铆-粘接复合接头为对象,采用数理统计分析检验实验数据合理性,进而对比不同材料组合及连接方式来分析粘接剂对自冲铆接接头强度的影响。实验表明,自冲铆接的剪切强度比剥离强度高;粘接剂对异种材料组合(硬质材料置于上板)自冲铆接的影响较同种材料组合自冲铆接更显著;异种材料组合(硬质材料置于上板)自冲铆-粘接复合技术,采用胶层厚度为0.1mm时,可获得有效的连接结构且具有良好的承载能力;T型异种材料组合压印连接吸震、缓冲效果更好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号