首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
建立了考虑材料和几何双重非线性的550MPa高强冷弯薄壁型钢卷边槽形截面轴压构件畸变屈曲性能分析的有限元模型,并通过对两种厚度高强冷弯薄壁型钢轴压构件畸变屈曲试验已有结果的分析比较验证了其有效性;采用该模型进一步分析了厚度、长度、初始缺陷模式及幅值等参数对畸变屈曲轴压构件承载力的影响,并对轴压构件畸变屈曲发生机理进行了探讨。结果表明:厚度、长度和初始缺陷模式是影响畸变屈曲轴压构件承载力的主要因素,且卷边面内屈曲是槽形截面轴压构件发生畸变屈曲的主要原因。通过理论计算与试验结果的对比分析,表明可以采用建议方法计算此类复杂截面轴压构件的畸变屈曲承载力。  相似文献   

2.
本文对550MPa高强冷弯薄壁型钢卷边槽形截面轴压构件畸变屈曲性能进行了试验研究,17根试件的试验结果表明:由于试件局部屈曲一般发生在畸变屈曲之前,促使畸变屈曲提前出现,这种相关作用减弱了构件整体刚度,降低了构件承载力;澳洲规范AS/NZS 4600:1996及北美规范NAS 2004中关于发生畸变屈曲构件承载力的计算方法没有考虑局部屈曲和畸变屈曲相关作用的不利影响。依据试验结果本文提出了一种修正直接强度法的建议计算方法,该法计算结果与试验结果较为接近且偏安全。  相似文献   

3.
针对屈服强度550MPa高强冷弯薄壁型钢轴压构件提出了一种控制畸变屈曲的构造措施--在卷边间设缀板,并通过试验对其有效性进行了验证。试验结果表明:屈服强度550MPa高强冷弯薄壁型钢卷边槽形截面轴压构件易发生畸变屈曲,通过构造措施能有效地阻止翼缘的转动,试件的畸变屈曲荷载和极限承载力都有很大的提高;随着缀板布置间距的不同,构件承载力的提高幅度也不同;缀板间距越小,试件承载力提高越多,但当缀板间距大于畸变屈曲半波长时,缀板不能起到提高承载力的作用。最后,在此基础上提出了构件不考虑畸变屈曲影响的若干条件,供实际设计参考。  相似文献   

4.
Distortional buckling mode of cold-formed steel thin-walled member is an unstable behavior, and in some cases it may govern the load-carrying capacity of the member. The source, evolution and performance of the formulas and test data for the two strength design curves developed by Hancock are studied, for predicting the load-carrying capacity in the distortional mode. A proposed strength design curve based on available test data and Hancock׳s strength design curves are then compared with the current design methods, the Direct Strength Method and the Effective Width Method, which are incorporated in the “North American specification for the design of cold-formed steel structural members” (AISI-NAS: 2007), “cold-formed steel structures” (AS/NAS 4600: 2005), and the Chinese “Technical specification for low-rise cold-formed thin-walled steel buildings” (JGJ 227-2011). The results indicate that the current design standards adopted the two strength design curves for the DSM and EWM, but they have some differences at the partial extent. A novel formula is proposed for dealing with this problem. The range of applicability of the proposed strength equation is extended from that in AS/NZS 4600 and is shown to be more accurate than AS/NZS 4600 when compared with that in the NAS S100.  相似文献   

5.
对卷边尺寸不同的两类腹板中间设置加劲卷边槽形截面,共18个冷弯薄壁型钢固支轴压试件进行畸变屈曲与局部屈曲相关作用的静力试验研究。得到试件的屈曲模式、相关屈曲行为、破坏模式以及极限荷载。试验结果表明:畸变屈曲与局部屈曲的耦合相关对试件的变形和极限荷载有不利作用;畸变屈曲与局部屈曲的耦合相关作用存有较大的屈曲后承载力;畸变屈曲与局部屈曲的耦合相关顺序,即畸变屈曲 局部屈曲耦合相关、局部屈曲 畸变屈曲耦合相关,对试件的变形、非线性平衡路径、破坏模式以及极限荷载的影响有所不同。采用ABAQUS有限元软件对试件进行模拟分析,计算结果与试验结果吻合良好。  相似文献   

6.
A nonlinear finite element (FE) model is developed to simulate two series of flexural tests, previously conducted by the authors, on industry standard cold-formed steel C- and Z-section beams. The previous tests focused on laterally braced beams with compression flange details that lead predominately to local buckling failures, in the first test series, and distortional buckling failures, in the second test series. The objectives of this paper are to (i) validate the FE model developed for simulation of the testing, (ii) perform parametric studies outside the bounds of the original tests with a particular focus on variation in yield stress and influence of moment gradient on failures, and (iii) apply the study results to examine and extend the Direct Strength Method of design. The developed FE model shows good agreement with the test data in terms of ultimate bending strength. Extension of the tested sections to cover yield stresses from 228 to 506 MPa indicates that the Direct Strength Method is applicable over this full range of yield stresses. The FE model is also applied to analyze the effect of moment gradient on distortional buckling. It is found that the distortional buckling strength of beams is increased due to the presence of moment gradient. Further, it is proposed and verified that the moment gradient effect on distortional buckling failures can be conservatively accounted for in the Direct Strength Method by using an elastic buckling moment that accounts for the moment gradient. An empirical equation, appropriate for use in design, to predict the increase in the elastic distortional buckling moment due to moment gradient, is developed.  相似文献   

7.
S.S.E. Lam  K.F. Chung  X.P. Wang 《Thin》2006,44(10):1077-1083
Cutting roll-formed steel lipped C-sections may produce different extent of cross section distortion along the lengths of the sections and may lead to additional initial geometric imperfections. Ten stub columns cut from two different sections were tested under axial compression. Flanges of the stub columns experienced distortional mode of failure, whereas the webs showed signs of local buckling failures. Ultimate compressive strengths obtained from the test results were 75–77% of the strengths estimated based on BS5950:Part 5. This indicates that geometric imperfections caused by cutting may significantly reduce the ultimate strength of stub columns.  相似文献   

8.
The finite element (FE) method is capable of solving the complex interactive buckling of cold-formed steel beams allowing for all important governing features such as geometrical imperfections, material nonlinearity, postbuckling, etc.; this is unlikely to be achieved by analytical methods. In this paper, two series of finite element models for buckling behaviour of laterally-restrained cold-formed steel Z-section beams have been developed with special reference to material and geometrical nonlinearities: one to allow for the possibility of combined local/distortional buckling and the other to allow for local buckling only. Four-point bending tests carried out by previous researchers have been used to verify the FE models. A simplified configuration of the test setup has been modelled in ABAQUS. In the local buckling FE models, distortional buckling has been restricted in the member using translational springs applied to the lip/flange corner of the beam. Predictions of load carrying capacity and deformed shapes exhibit excellent agreement with both the results from the more extensive models and laboratory tests. Further papers will exploit the developed FE models to investigate the different forms of buckling that occur in laterally-restrained cold-formed steel beams i.e. local, distortional and combined local/distortional.  相似文献   

9.
This paper presents a finite strip program CUFSM used to calculate and analyze the elastic distortional buckling of cold-formed thin-walled steel flexural members with stiffeners in the flange, which has different sectional geometric parameters. According to the classical buckling stress formula, the distortional buckling coefficient of the flange can be calculated so as to analyze the influence of changed sectional geometric parameters on it. On this basis, this study provides a simplified formula of distortional buckling stress to calculate 40 members with different sections which are selected from the Technical Code of Cold-Formed Thin-Wall Steel Structures of China but not contained in this paper. Compared with the analysis results of CUFSM, it shows that the two simplified formulas have quite high accuracy and wide applicability for general members provided by the specification. So it is suggested that they can be used for engineering design and standard revision.  相似文献   

10.
Distortional buckling of compression members usually comprises rotation and translation of each flange and lip about the flange-web connection in opposite directions. The present procedures for the calculation of elastic distortional buckling stress in the literature are very complex, cumbersome and have long expressions. In this paper a new neural network (NN) based formula is proposed for the determination of the elastic distortional buckling stress of cold-formed steel C-sections with both end sections pinned. The focus of this study is on the distortional buckling, for which existing results are for sections subjected to pure compression and/or pure bending only. The data used for training and testing NNs is taken from Schafer’s report. The NN-based estimates are compared with the experimental, numerical and analytical results of different researchers and methods. It was found that the proposed NN based-formula is practical in predicting the elastic distortional buckling stress of cold formed steel C-sections.  相似文献   

11.
对63根屈服强度550MPa高强冷弯薄壁型钢卷边槽形截面轴压构件进行试验研究,分析了构件的屈曲模式和极限承载力,并将参考AISI规范、澳洲规范和北美规范及我国现行行业标准《低层冷弯薄壁型钢房屋建筑技术规程》(报批稿)计算的构件承载力与试验结果进行分析比较。在此基础上,对高强超薄壁型钢卷边槽形截面轴压构件的承载力合理计算模式进行研究。结果表明:高强超薄壁型钢卷边槽形截面轴压构件在宽厚比较大时会出现畸变屈曲模式;采用等效板件方法计算加劲板件有效宽度后,我国《低层冷弯薄壁型钢房屋建筑技术规程》(报批稿)适用于屈曲强度550MPa、厚度小于2.00mm的冷弯薄壁型钢卷边槽形截面构件承载力计算。  相似文献   

12.
进行了48根屈服强度550MPa高强冷弯薄壁型钢卷边槽形截面偏心受压构件试验,考虑了不同截面形式、厚度、长细比和荷载偏心方式的影响,研究了这类偏心受压构件的破坏模式、承载力影响因素以及构件承载力计算方法。结果表明:高强冷弯薄壁型钢偏压构件由于材料强度高,截面宽厚比较大,局部屈曲和畸变屈曲的影响较大,我国规范仅考虑了局部屈曲的影响而没有全面考虑畸变屈曲的影响,这使得部分发生畸变屈曲的试件计算结果偏于不安全,但又对不发生畸变屈曲的长细比较大的构件偏于保守。最后,在试验和现有规范方法比较分析的基础上,提出了一种适用于高强冷弯薄壁型钢偏压构件极限承载力的建议计算方法。该建议方法计算所得结果与试验结果吻合较好,且安全可靠,可供设计参考。  相似文献   

13.
Design for openings in cold-formed steel channel stub columns   总被引:2,自引:0,他引:2  
This paper is concerned with the ultimate load capacity of perforated cold-formed steel channel stub columns. A design equation has been developed to determine the ultimate load capacity of perforated channel short columns containing either single or multiple openings of square, circular and manufacturer's opening shape. The equation is based on extensive parametric studies carried out using finite element modelling on plain and lipped channel sections containing openings. A wide range of parameters such as plate slenderness, opening shapes and sizes have been considered in the study. Web plate slenderness and opening area ratio are the two main variables used to derive the design equations. The accuracy of the proposed design equation is established by comparison with a number of experimental and finite element results reported by other researchers.  相似文献   

14.
This paper presents and discusses numerical results, obtained through Ansys shell finite element analyses, dealing with the post-buckling behaviour (mostly elastic, but also elastic–plastic), ultimate strength and failure mode nature of fixed-ended and pin-ended thin-walled equal-leg angle steel columns with coincident critical flexural-torsional and minor-axis flexural buckling loads (i.e., experiencing very strong coupling effects between these two global instability phenomena) – for comparative purposes, columns that are buckling in pure flexural-torsional and flexural modes are also analysed. Since the main aim of the work is to investigate the column imperfection-sensitivity, the analyses concern otherwise identical columns containing initial geometrical imperfections with different shapes and amplitudes, combining the competing critical buckling modes – particular attention is paid to the sign of the minor-axis flexural component. The results reported consist of column (i) elastic equilibrium paths and the corresponding peak loads and deformed configurations and (ii) elastic–plastic collapse loads and mechanisms, making it possible to assess how they are influenced by the initial geometrical imperfections.  相似文献   

15.
This paper describes a series of compression tests conducted on cold-formed simple lipped channels and lipped channels with intermediate stiffeners in the flanges and web fabricated from high strength steel plate of thickness 0.6 and 0.8 mm with the nominal yield stress 560 MPa. A range of lengths of lipped channel sections were tested to failure with both ends of the column fixed with a special capping to prevent local failure of column ends and influence from the shift of centroid during testing. The high strength cold-formed steel channel sections of intermediate lengths generally displayed a significant interaction between local and distortional buckling. A noticeable interaction between local and overall buckling was also observed for the long columns. A significant post-buckling strength reserve was shown for those sections that showed interaction between local and distortional or overall buckling. Simple design strength formulas in the Direct Strength Method for the thin-walled cold-formed steel sections failing in the mixed mode of local and distortional buckling have been studied. The strengths predicted by the strength formulas proposed are compared with the test results for verification.  相似文献   

16.
This paper examines the design and load-carrying capacity of fixed-ended web-stiffened lipped channel columns eroded by mode interaction behaviour combined with distortional and local deformations. Initially, the paper presents the results of an experimental investigation of compressive tests on web-stiffened lipped channel columns fabricated from cold-formed mild steel with a thickness of 1.50 mm, which is aimed at determining their failure load-carrying capacity; the experimental investigation also aims to provide experimental evidence of the occurrence of such coupling phenomena concerning distortional and local modes, namely, local-distortional interaction and distortional-local interactive failures. Then, the paper examines the ultimate strength data of experimental columns, both reported in this paper and collected from the literature, and concludes that the current direct strength method (DSM) provides very unsafe predictions concerning such a detrimental interaction nature. Next, two DSM-based design approaches, namely, the nominal strength against local-distortional (NLD) and distortional-local (NDL) procedures, are presented and evaluated on the basis of all available experimental ultimate strength data. Finally, proposals and design considerations based on the DSM-shape for the thin-walled cold-formed steel sections, which fail in mixed modes of distortional and local buckling, are presented.  相似文献   

17.
18.
基于已有的承载力试验研究结果,对屈服强度550MPa高强冷弯薄壁型钢中常用的卷边槽形截面轴压构件和偏压构件的计算模式不定性进行了分析,并统计分析了高强冷弯薄壁型钢强度不定性、几何特性不定性。在此基础上,采用改进一次二阶矩方法,按现有规范的抗力分项系数要求,计算了高强冷弯薄壁型钢卷边槽形截面轴压构件和偏压构件不同可能荷载组合下的可靠指标。结果表明:对于宽厚比符合规范要求的屈服强度550MPa高强冷弯薄壁型钢卷边槽形截面轴压构件和偏压构件,按现有规范的抗力分项系数计算得到的可靠指标均能满足目标可靠指标的要求,证明了所采用的承载力计算方法的适用性;但对于宽厚比超出规范要求的轴压和偏压构件,计算得到的可靠指标不能满足目标可靠指标的要求。  相似文献   

19.
Jennifer Tovar  Thomas Sputo   《Thin》2005,43(12):1882-1912
A study to develop methods of analyzing perforated, axially loaded, cold-formed steel studs using the provisions of the Direct Strength Method [American Iron and Steel Institute (AISI). North American Specification for the Design of Cold-Formed Steel Structural Members 2001 Edition with Supplement 2004 (AISI/COFS/NASPEC 2004) and Commentary (AISI/COFS/NASPEC 2004), Washington, DC; 2004] was undertaken using the Finite Strip Method as the method for determining the elastic buckling stresses. Several different models were developed to represent the effect of the web perforations. The capacities predicted using the Direct Strength Method for the limit states of distortional and local buckling were compared to capacities calculated using the equations contained in the AISI Specification [American Iron and Steel Institute (AISI). North American Specification for the Design of Cold-Formed Steel Structural Members 2001 Edition with Supplement 2004 (AISI/COFS/NASPEC 2004) and Commentary (AISI/COFS/NASPEC 2004), Washington, DC; 2004]. The limit state of longwave buckling is considered in a companion paper [Sputo T, Tovar J. Application of direct strength method to axially loaded perforated cold-formed steel studs: Part 1. Longwave buckling. Thin Walled Struct, submitted for publication]. The validity of the results is discussed and recommendations are made for the use of the Direct Strength Method for these members.  相似文献   

20.
为研究偏心荷载作用下拼合构件的畸变屈曲性能,并评估现行中美规范计算方法适用性,对22个腹板V形加劲及开孔的冷弯薄壁拼合H形钢柱进行受压性能试验,得到了不同柱长、不同开孔位置及个数、不同偏心距以及绕强轴和弱轴弯曲方向的拼合构件的破坏模式和承载力。试验结果表明:所有腹板V形加劲及开孔的冷弯薄壁拼合H形钢柱均发生了畸变屈曲或以畸变为主的相关屈曲,畸变半波的分布受孔洞和加劲的影响;绕强轴和绕弱轴偏心方向及偏心距大小对承载力有显著影响。基于现行中美规范计算方法对腹板V形加劲及开孔的冷弯薄壁拼合H形钢柱承载力进行研究,结果表明:计算绕强轴压弯承载力时,按GB 50018—2002《冷弯薄壁型钢结构技术规范》、JGJ/T 421—2018《冷弯薄壁型钢多层住宅技术标准》以及美国NAS100-16的承载力公式计算结果均偏于安全;计算绕弱轴压弯承载力时,试验结果与按GB 50018—2002和美国NAS100-16的承载力公式计算结果的比值平均值为1.16、1.15,偏于安全且较为合理,与按JGJ/T 421—2018的计算结果的比值平均值为1.66,较为保守,建议拼合构件的双肢可靠连接时,按拼合整体截...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号