共查询到11条相似文献,搜索用时 15 毫秒
1.
C.L. Hinkle E.M. Vogel P.D. Ye R.M. Wallace 《Current Opinion in Solid State & Materials Science》2011,15(5):188-207
The prospect of enhanced device performance from III–V materials has been recognized for at least 50 years, and yet, relative to the phenomenal size of the Si-based IC industry, these materials fulfilled only specific niches and were often referred to as “the material of the future” [1]. A key restriction enabling widespread use of III–V materials is the lack of a high quality, natural insulator for III–V substrates like that available for the SiO2/Si materials system [2]. The prospect of impending scaling challenges for technologies based on silicon metal oxide semiconductor field effect transistor (MOSFET) devices has brought renewed focus on the use of alternate surface channel materials from the III–V compound semiconductor family. The performance of the traditional MOSFET device structure is dominated by defects at the semiconductor/oxide interface, which in turn requires a high quality semiconductor surface. In this review, reflecting the authors’ current opinion, the recent progress in the understanding of the dielectric/III–V interface is summarized, particularly in regard to the interfacial chemistry that impacts the resultant electrical behavior observed. The first section summarizes the nature of the oxidation states of surface oxides on InxGa1−xAs. Then the atomic layer deposition of such oxides on the InxGa1−xAs surface is summarized in view of the interfacial chemical reactions employed. Finally the resultant electrical properties observed are examined, including the effects of substrate orientation. Portions of this review have been published previously [3] and [4]. 相似文献
2.
Local buckling of intact thin-walled columns is generally performed by modeling the wall segments as long plates and by assuming that edges common to two or more plates remain straight. Thus, the buckling load can be determined by considering the wall segments as individual plates rotationally restrained by the adjacent wall segments. This technique is combined with plate theories as a new analytical method to predict the buckling load of an initially delaminated column with any arbitrary sections (open or closed). First, moments at the rotationally restrained edges of delaminated segment (web or flange) are obtained from the curvature and stiffness of the adjacent laminates. Then, the strain energy of this delaminated segment with distributed moment at edges is calculated based on the first-order shear deformation theory. Using the principal of minimum potential energy, the governing equations are obtained and solved by the Rayleigh–Ritz approximation technique. Results of the present approach are compared with three-dimensional finite-element results obtained from eigenvalue buckling analysis in ANSYS software for both box- and channel-section columns with cross-ply and angle-ply stacking sequences. Finally, the effects of delamination size and location are investigated on the buckling loads. 相似文献
3.
This paper presents a Generalised Beam Theory (GBT) formulation to analyse the local and global buckling behaviour of FRP (fibre-reinforced polymer) composite thin-walled columns with arbitrary open cross-sections, which takes into account both shear deformation and cross-section deformation effects. After describing the steps and procedures involved in performing the GBT cross-section analysis of an arbitrarily branched composite (laminate plate) thin-walled member, the paper addresses the numerical implementation of the proposed GBT formulation, carried out by means of the finite element method (GBT-based beam element) – particular attention is devoted to the derivation of the element linear and geometric stiffness matrices, which incorporate all the material coupling effects. In order to illustrate the application and capabilities of the proposed formulation and implementation, several numerical results are presented and discussed, dealing with the local and global buckling behaviour of FRP composite I-section columns with different ply orientations and stacking sequences. Taking advantage of the GBT modal features, deep insight is acquired on the complex composite member buckling mechanics, namely those involving bending–torsion or global–local coupling effects. In particular, one investigates the influence of (i) the constitutive assumption regarding the transverse extension occurring in the cross-section composite walls and (ii) the distribution of pre-buckling normal stresses (due to axial compression) on the buckling behaviour of I-section columns. For validation purposes, the above results are compared with values recently reported in the literature and estimates obtained from shell finite element analyses. 相似文献
4.
A recent technique for strengthening steel and steel-concrete composite structures by the use of externally bonded Fiber Reinforced
Polymer (FRP) sheets, to increase the flexural capacity of the structural element, is described. Several researches developed
FRP strengthening of reinforced concrete and masonry structures, but few experimental studies about steel and steel-concrete
composite elements are available. Some examples of guidelines for the design and construction of externally bonded FRP systems
for strengthening existing metal structures are available, but the method used to predict the flexural behaviour of FRP strengthened
elements is usually based on the hypothesis of elastic behaviour of materials and FRP laminate is mainly considered only under
the tensile flange. In this paper, an analytical procedure to predict the flexural behaviour of FRP strengthened steel and
steel-concrete composite elements, based on cross-sectional behaviour and taking into account the non-linear behaviour of
the materials with any configuration of FRP reinforcement, is given. Analytical predictions are compared with some experimental
results available in the literature on the flexural behaviour of FRP strengthened steel and steel-concrete composite elements,
showing good agreement of the results, even in the non-linear phase, until failure. 相似文献
5.
The explicit closed-form local buckling solution of in-plane shear-loaded orthotropic plates with two opposite edges simply supported and other two opposite edges either both rotationally restrained or one rotationally restrained and the other free is presented. Based on the boundary condition of the other two opposite edges, two types of plates are considered: the RR (both the edges rotationally restrained) and RF (one edge restrained and the other free) plate elements. Different plate buckled shape functions are proposed, and the approximate explicit expressions for the buckling loads are derived using the Rayleigh–Ritz method for the plate with the generic rotationally-restrained (R) boundary conditions which can be reduced to two extreme cases, i.e., simply supported (S) and clamped (C). The accuracy of the derived explicit solutions is verified by comparing the predictions with the existing solutions and numerical finite element analysis, and excellent agreements are obtained. The effects of material and boundary restraining parameters on the local shear buckling behavior of the plate elements are discussed. The derived explicit formulas for the shear buckling loads are straightforward, efficient and reliable for preliminary engineering design and analysis of composite structures under primarily shear-dominant loading conditions. 相似文献
6.
This paper presents the results of a research program aimed at investigating the effectiveness of carbon fiber-reinforced polymers (CFRP) to upgrade corrosion-damaged eccentrically loaded reinforced concrete (RC) columns. A total of 16 square RC columns with end corbels were constructed. Test specimen had an overall length of 1200 mm whereas each end corbel had a cross section of and a length of 350 mm. The specimen in the test region was having longitudinal steel ratio of 1.9%. The damaged specimens were exposed to 30 days of accelerated corrosion that corresponded to a steel mass loss of about 4.25%. The main test parameters were the CFRP repair scheme (no wrapping, full-wrapping, and partial-wrapping) and the eccentricity-to-section height (e/h) ratio (0.3, 0.43, 0.57, and 0.86). The strength of the damaged columns fully wrapped with CFRP was up to 40% higher than that of the control undamaged columns. The strength gain was inversely proportional to the eccentricity ratio. Partial CFRP-wrapping was 8% less effective than full CFRP-wrapping at nominal e/h of 0.3. At higher e/h values, the confinement level had a negligible effect on the columns’ strength. An analytical model was then proposed to predict the columns’ strength under eccentric loading. A comparative analysis between predicted and experimental results demonstrated the model’s accuracy and reliability. 相似文献
7.
Pultruded fiber–reinforced plastic (FRP) composite structural shapes (beams and columns) are thin-walled open or closed sections consisting of assemblies of flat plates and commonly made of E-glass fiber and either polyester or vinylester resins. Due to high strength-to-stiffness ratio of composites and thin-walled sectional geometry of FRP shapes, buckling is the most likely mode of failure before material failure. In this paper, explicit analyses of local buckling of rectangular orthotropic composite plates with various unloaded edge boundary conditions (i.e., (1) rotationally restrained along both unloaded edges (RR), and (2) one rotationally restrained and the other free along the unloaded edges (RF)) and subjected to uniform in-plane axial action at simply-supported loaded edges are first presented. A variational formulation of the Ritz method is used to establish an eigenvalue problem, and explicit solutions of plate local buckling coefficients in term of the rotational restraint stiffness (k) are obtained. The two cases of rotationally restrained plates (i.e., the RR and RF plates) are further treated as discrete plates of closed and open sections, and by considering the effect of elastic restraints at the joint connections of flanges and webs, the local buckling of different FRP shapes under uniform axial compression is studied. The approximate expressions of the rotational restraint stiffness (k) for various common FRP sections are provided, and their application to sectional local buckling predictions is illustrated. The explicit local buckling formulas of rotationally restrained plates are validated with the exact transcendental solutions. The analytical predictions for local buckling of various FRP profiles based on the present discrete plate analysis and considering the elastic restraints of the flange–web connections are in excellent agreements with available experimental results and finite element eigenvalue analyses. A design guideline for local buckling prediction and related performance improvement is proposed. The present explicit formulation can be applied effectively to determine the local buckling capacities of composite plates with elastic restraints along the unloaded edges and can be further used to predict the local buckling strength of FRP shapes. 相似文献
8.
Thermal buckling and postbuckling analysis of a laminated composite beam with embedded SMA actuators
In this paper, the thermal buckling and postbuckling behaviours of a composite beam with embedded shape memory alloy (SMA) wires are investigated analytically. For the purpose of enhancing the critical buckling temperature and reducing the lateral deflection for the thermal buckling, the characteristics of thermal buckling are investigated through the use of the shape recovery force associated with SMA wire actuators. The results of both thermal buckling and postbuckling behaviours present quantitatively how the shape recovery force affects the thermal buckling behaviour. The analytical results show that the shape recovery force reduces the thermal expansion of the composite laminated beam, which results in both an increment of the critical buckling temperature and also a reduction of the lateral deflection of postbuckling behaviours. A new formula is also proposed to describe the critical buckling temperature of the laminated composite beam with embedded SMA wire actuators. 相似文献
9.
《工程优选》2012,44(1):106-121
ABSTRACTThe thermal buckling load on perforated composite plates is affected by several parameters, including design variables such as cut-out orientation, fibre angle, bluntness of cut-out corners, cut-out size to plate size ratio and stacking sequence. This study investigates the effect of these parameters on the thermal buckling load of a composite plate with a quasi-square cut-out. Optimal values of the parameters are determined using a genetic algorithm to achieve the maximum buckling load. The composite used herein is a four-layer laminated composite plate. The stacking sequences of the plate are also studied. Stability equations are obtained using first order shear deformation theory. The results showed that a plate with a quasi-square cut-out is more resistant to thermal buckling than one with a circular cut-out; thermal buckling of a composite plate is dependent on various parameters, and the maximum thermal buckling load can be achieved by appropriate selection of these parameters. 相似文献
10.
Structural health monitoring of fatigue-cracked aircraft structural panels repaired with bonded FRP composite patches for extending the service life of aging aircraft has received wide attention. In this paper a method for identifying the locations and shapes of crack and disbond fronts in aircraft structural panels repaired with bonded FRP composite patches is presented. The identification is performed by minimizing the residual norm between the measured in-plane strain range on a strain measurement plane in the FRP composite patches and the calculated in-plane strain range. Several numerical examples of identification of the locations and shapes of crack and disbond fronts are examined. The effects of the number of strain measurement points, position of the strain measurement plane, and measurement errors of the in-plane strain ranges on the identification results are discussed. The validity of this identification method is verified by comparing the identification results with the exact ones. 相似文献
11.
C. V. Srinivasa W. P. Prema Kumar M. T. Prathap Kumar Ashok R. Bangar Pavan Kumar M. S. Rudresh 《先进材料力学与结构力学》2017,24(4):304-317
This article deals with experimental and finite element studies on the buckling of isotropic and laminated composite skew plates with circular holes subjected to uniaxial compression. The influence of skew angle, fiber orientation angle, laminate stacking sequence, and aspect ratio on critical buckling load are evaluated using the experimental method (using Methods I through V) and finite element method using MSC/NASTRAN. Method I yields the highest experimental value and Method IV the lowest experimental value for critical buckling load in the case of isotropic skew plates with circular holes. For all laminate stacking sequences considered, Method V yields the highest experimental value for critical buckling load for skew angle = 0° and Method IV yields the highest experimental value for critical buckling load for skew angles = 15° and 30°. For all laminate stacking sequences and skew angles considered, Method II yields the lowest experimental value for critical buckling load. The maximum discrepancy between the experimental values given by Method IV and the finite element solution is about 10% in the case of isotropic skew plates. The maximum discrepancy between the experimental values given by Method II and the finite element solution is about 21% in the case of laminated composite skew plates considered. The percentage of discrepancy between the numerical or finite element solution and experimental value increases as the skew angle increases. The critical buckling load decreases as the aspect ratio increases. 相似文献