首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a nth-order shear deformation theory is proposed to analyze the free vibration of laminated composite plates. The present nth-order shear deformation theory satisfies the zero transverse shear stress boundary conditions on the top and bottom surface of the plate. Reddy’s third-order theory can be considered as a special case of present nth-order theory (n = 3). Natural frequencies of the laminated composite plates with various boundary conditions, side-to-thickness ratios, material properties are computed by present nth-order theory and a meshless radial point collocation method based on the thin plate spline radial basis function. The results are compared with available published results which demonstrate the accuracy and efficiency of present nth-order theory.  相似文献   

2.
In this article, a new exact closed-form procedure is presented to solve free vibration analysis of functionally graded rectangular thick plates based on the Reddy’s third-order shear deformation plate theory while the plate has two opposite edges simply supported (i.e., Lévy-type rectangular plates). The elasticity modulus and mass density of the plate are assumed to vary according to a power-law distribution in terms of the volume fractions of the constituents whereas Poisson’s ratio is constant. Based on the present solution, five governing complicated partial differential equations of motion were exactly solved by introducing the auxiliary and potential functions and using the method of separation of variables. The validity and high accuracy of the present solutions are investigated by comparing some of the present results with their counterparts reported in literature and the 3-D finite element analysis. It is obvious that the present exact solution can accurately predict not only the out of plane, but also the in-plane modes of FG plate. Furthermore, a new eigenfrequency parameter is defined having its special own characteristics. Finally, the effects of boundary conditions, thickness to length ratio, aspect ratio and the power law index on the frequency parameter of the plate are presented.  相似文献   

3.
Natural frequencies and buckling stresses of plates made of functionally graded materials (FGMs) are analyzed by taking into account the effects of transverse shear and normal deformations and rotatory inertia. The modulus of elasticity of the plates is assumed to vary according to a power-law distribution in terms of the volume fractions of the constituents. By using the method of power series expansion of displacement components, a set of fundamental dynamic equations of a two-dimensional (2-D) higher-order theory for rectangular functionally graded (FG) plates is derived through Hamilton’s principle. Several sets of truncated approximate theories are applied to solve the eigenvalue problems of FG plates with simply supported edges. In order to assure the accuracy of the present theory, convergence properties of the fundamental natural frequency are examined in detail. Critical buckling stresses of FG plates subjected to in-plane stresses are also obtained and a relation between the buckling stress and natural frequency of simply supported FG plates without in-plane stresses is presented. The distributions of modal displacements and modal stresses in the thickness direction are obtained accurately by satisfying the surface boundary conditions of a plate. The modal transverse stresses have been obtained by integrating the three-dimensional equations of motion in the thickness direction starting from the top or bottom surface of a plate. The present numerical results are also verified by satisfying the energy balance of external and internal works are considered to be sufficient with respect to the accuracy of solutions. It is noticed that the present 2-D higher-order approximate theories can predict accurately the natural frequencies and buckling stresses of simply supported FG plates.  相似文献   

4.
In this article, a new five-variable refined plate theory for the free vibration analysis of functionally graded sandwich plates is developed. By dividing the transverse displacement into bending, shear, and thickness stretching parts, the number of unknowns and governing equations of the present theory is reduced, and hence, makes it simple to use. Indeed, the number of unknown functions involved in the present theory is only five, as opposed to six or more in the case of other shear and normal deformation theories. The theory accounts for hyperbolic distribution of the transverse shear strains, and satisfies the zero traction boundary conditions on the surfaces of the plate without using a shear correction factor. Two common types of functionally graded material (FGM) sandwich plates, namely, the sandwich with FGM facesheet and homogeneous core and the sandwich with homogeneous facesheet and FGM core, are considered. The equations of motion are obtained using Hamilton's principle. Numerical results of the present theory are compared with three-dimensional elasticity solutions and other higher-order theories reported in the literature. It can be concluded that the proposed theory is accurate and efficient in predicting the free-vibration response of functionally graded sandwich plates.  相似文献   

5.
This article proposes a higher-order shear deformation beam theory for free vibration analysis of functionally graded carbon nanotube-reinforced composite sandwich beams in a thermal environment. The temperature-dependent material properties of functionally graded carbon nanotube-reinforced composite beams are supposed to vary continuously in the thickness direction and are estimated through the rule of mixture. The governing equations and boundary conditions are derived by using Hamilton's principle, and the Navier solution procedure is used to achieve the natural frequencies of the sandwich beam in a thermal environment. A parametric study is led to carry out the effects of carbon nanotube volume fractions, slenderness ratio, and core-to-face sheet thickness ratio on free vibration behavior of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets. Numerical results are also presented in order to compare the behavior of sandwich beams including uniformly distributed carbon nanotube-reinforced composite face sheets to those including functionally graded carbon nanotube-reinforced composite face sheets.  相似文献   

6.
C.Y. Dong   《Materials & Design》2008,29(8):1518-1525
The aim of this paper is to investigate three-dimensional free vibration of functionally graded annular plates with different boundary conditions using the Chebyshev–Ritz method, in which a set of duplicate Chebyshev polynomial series multiplied by the boundary function satisfying the boundary conditions are chosen as the trial functions of the displacement components. Two kinds of variations of material properties in the thickness direction of the plates are considered. Convergence of the Chebyshev–Ritz method is checked. Numerical results are given and compared with the previously published solutions.  相似文献   

7.
This paper presents an original hyperbolic sine shear deformation theory for the bending and free vibration analysis of functionally graded plates. The theory accounts for through-the-thickness deformations.  相似文献   

8.
This paper presents an analytical solution to the static analysis of functionally graded plates, using a recently developed higher order shear deformation theory (HSDT) and provides detailed comparisons with other HSDT’s available in the literature. These theories account for adequate distribution of the transverse shear strains through the plate thickness and tangential stress-free boundary conditions on the plate boundary surfaces, thus a shear correction factor is not required. The mechanical properties of the plates are assumed to vary in the thickness direction according to a power-law distribution in terms of the volume fractions of the constituents. The governing equations of a functionally graded (FG) plate and boundary conditions are derived by employing the principle of virtual work. Navier-type analytical solution is obtained for FG plates subjected to transverse bi-sinusoidal and distributed loads for simply supported boundary conditions. Results are provided for thick to thin FG plates and for different volume fraction distributions. The accuracy of the present code is verified by comparing it with known results in the literature.  相似文献   

9.
曹源  雷剑 《复合材料学报》2020,37(1):223-235
基于修正的偶应力理论和正弦剪切变形梁理论,研究了功能梯度材料三明治微梁的静态弯曲和自由振动行为。考虑两种不同类型的功能梯度材料三明治微梁,根据哈密顿变分原理建立其静动态力学行为的控制方程,应用Navier解法,得到了简支边界条件下弯曲变形和振动频率的解析解,同时,给出了固支等边界条件时的里兹法求解过程。数值算例表明,功能梯度三明治微梁的静动态力学行为具有明显的尺度效应,微梁的无量纲厚度、功能梯度指数、长厚比和结构形式等因素对其静动态响应有很大影响,相关结果和规律对功能梯度材料三明治微梁的结构设计和性能优化等实际工程应用具有一定的指导意义。   相似文献   

10.
We use the global collocation method, the first and the third-order shear deformation plate theories, the Mori–Tanaka technique to homogenize material properties, and approximate the trial solution with multiquadric radial basis functions to analyze free vibrations of functionally graded plates. Frequencies computed by the present method are found to agree well with those from the analytical solution of Vel and Batra, and the numerical solution of Qian et al. based on the meshless local Petrov–Galerkin formulation.  相似文献   

11.
Thermal post-buckling analysis is first presented for functionally graded elliptical plates based on high-order shear deformation theory in different thermal environments. Material properties are assumed to be temperature-dependent and graded in the thickness direction. Ritz method is employed to determine the central deflection-temperature curves, the validity of which can be confirmed by comparison with related researchers' results; it is worth noting that the forms of approximate solutions are well chosen in consideration of both simplicity and accuracy. Influences played by different supported boundaries, thermal environmental conditions, ratio of major to minor axis, and volume fraction index are discussed in detail.  相似文献   

12.
Exact solutions are presented to study the free vibration of a beam made of symmetric functionally graded materials. The formulation used is based on a unified higher order shear deformation theory. Material properties are taken to be temperature-dependent, and vary continuously through the thickness according to a power law distribution (P-FGM), or an exponential law distribution (E-FGM) or a sigmoid law distribution (S-FGM). The beam is assumed to be initially stressed by a temperature rise through the thickness. Temperature field is considered constant in xy plane of the beam. Hamilton’s principle is used to derive the governing equations of motion. Free vibration frequencies are obtained by solving analytically a system of ordinary differential equations, for different boundary conditions.  相似文献   

13.
This paper mainly Presents free vibration analyses of metal and ceramic functionally graded plates with the local Kriging meshless method. The Kriging technique is employed to construct shape functions which possess Kronecker delta function property and thus make it easy to implement essential boundary conditions. The eigenvalue equations of free vibration problems are based on the first-order shear deformation theory and the local Petrov–Galerkin formulation. The cubic spline function is used as the weight function which vanishes on internal boundaries of local quadrature domains and hence simplifies the implementation. Convergence studies are conducted to examine the stability of the present method. Three types of functionally graded plates – square, skew and quadrilateral plates – are considered as numerical examples to demonstrate the versatility of the present method for free vibration analyses.  相似文献   

14.
基于一阶剪切变形理论的功能梯度球环振动特性   总被引:1,自引:0,他引:1       下载免费PDF全文
提出一种半解析法分析了一般边界条件下中等厚度功能梯度球环结构的自由振动特性。基于一阶剪切变形理论推导了中等厚度功能梯度球环结构公式,其中位移函数用改进傅里叶级数表示以消除边界的不连续性,并利用弹簧参数法来模拟一般边界条件;利用里兹法求解得到功能梯度球环结构的固有频率;在收敛性分析的基础上,将本文结果与有限元法、试验数据和文献数据进行了对比,并探讨相关参数的影响。研究表明,本文提出的方法收敛性好,求解精度高;功能梯度球环结构频率参数随厚度和剪切修正系数的增大而增大。  相似文献   

15.
This paper mainly presents bending and free vibration analyses of thin-to-moderately thick composite plates reinforced by single-walled carbon nanotubes using the finite element method based on the first order shear deformation plate theory. Four types of distributions of the uniaxially aligned reinforcement material are considered, that is, uniform and three kinds of functionally graded distributions of carbon nanotubes along the thickness direction of plates. The effective material properties of the nanocomposite plates are estimated according to the rule of mixture. Detailed parametric studies have been carried out to reveal the influences of the volume fractions of carbon nanotubes and the edge-to-thickness ratios on the bending responses, natural frequencies and mode shapes of the plates. In addition, the effects of different boundary conditions are also examined. Numerical examples are computed by an in-house finite element code and the results show good agreement with the solutions obtained by the FE commercial package ANSYS.  相似文献   

16.
Accurate zigzag theory is presented for static and free vibration analysis of multilayered functionally graded material (FGM) cylindrical shells and rectangular plates by approximating inplane displacements as a combination of linear layerwise and cubic global terms. Governing equations of motion are derived using Hamilton’s principle. The theory yields accurate results for displacements, stresses and natural frequencies in simply-supported functionally graded multilayered cylindrical shell panels and rectangular plates. Effect of changing the volume fraction ratio, aspect ratio and thickness of FGM layer between two homogeneous layers are investigated for a number of multilayered shell and plate laminates.  相似文献   

17.
Geometrically nonlinear vibrations of functionally graded (FG) doubly curved shells subjected to thermal variations and harmonic excitation are investigated via multi-modal energy approach. Two different nonlinear higher-order shear deformation theories are considered and it is assumed that the shell is simply supported with movable edges. Using Lagrange equations of motion, the energy functional is reduced to a system of infinite nonlinear ordinary differential equations with quadratic and cubic nonlinearities which is truncated based on solution convergence. A pseudo-arclength continuation and collocation scheme is employed to obtain numerical solutions for shells subjected to static and harmonic loads. The effects of FGM power law index, thickness ratio and temperature variations on the frequency–amplitude nonlinear response are fully discussed and it is revealed that, for relatively thick and deep shells, the Amabili–Reddy theory which retains all the nonlinear terms in the in-plane displacements gives different and more accurate results.  相似文献   

18.
In this paper a general nonlinear third-order plate theory that accounts for (a) geometric nonlinearity, (b) microstructure-dependent size effects, and (c) two-constituent material variation through the plate thickness (i.e., functionally graded material plates) is presented using the principle of virtual displacements. A detailed derivation of the equations of motion, using Hamilton’s principle, is presented, and it is based on a modified couple stress theory, power-law variation of the material through the thickness, and the von Kármán nonlinear strains. The modified couple stress theory includes a material length scale parameter that can capture the size effect in a functionally graded material. The governing equations of motion derived herein for a general third-order theory with geometric nonlinearity, microstructure dependent size effect, and material gradation through the thickness are specialized to classical and shear deformation plate theories available in the literature. The theory presented herein also can be used to develop finite element models and determine the effect of the geometric nonlinearity, microstructure-dependent size effects, and material grading through the thickness on bending and postbuckling response of elastic plates.  相似文献   

19.
The bending response of functionally graded material (FGM) sandwich plates subjected to thermomechanical loads is investigated using a four-variable refined plate theory. A new type of FGM sandwich plate, namely, both FGM face sheets and an FGM hard core, is considered. Containing only four unknown functions, the governing equations are deduced based on the principle of virtual work and then these equations are solved via the Navier approach. Analytical solutions are obtained to predict the deflections and stresses of simply supported FGM sandwich plates. Benchmark comparisons of the solutions obtained for a degradation model (functionally graded face sheets and homogeneous cores) with ones computed by several other theories are conducted to verify the accuracy and efficiency of the present approach. The influences of volume fraction distribution, geometrical parameters, and thermal load on dimensionless deflections and normal and shear stresses of the FGM sandwich plates are studied.  相似文献   

20.
In this paper, a nonlinear analysis for large amplitude free vibration of laminated composite plates is developed using higher-order shear deformation theory. The effect of all higher-order terms arising from nonlinear strain-displacement relations are included in the formulation and present plate theory exhibits traction-free surface of the laminated plate in von-Karman sense. A finite element procedure considering a C° continuous isoparametric nine-node rectangular element is implemented for nonlinear model. The accuracy of the theory is validated with some available theory for different aspect ratio, modular ratio, number of layers, ply orientations, etc. through some numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号