首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The influence of electrolytes, which are dissolved in the aqueous absorbent and do not react with nitrogen oxides, on the absorption kinetics of both these components was investigated experimentally. In addition to demineralized water, various salt solutions of different concentrations as well as sodium hydroxide solution were used as absorbents. The term H \documentclass{article}\pagestyle{empty}\begin{document}$ H\sqrt {k_1 D} $\end{document} for N2O4 and N2O3, which is important for the design of industrial absorbers, was determined as a function of composition and concentration of the absorbents. In the case of N2O4, the chosen measuring and evaluation methods permitted a separate determination of the rate constant k of the pseudo first order reaction and of the solubility H. The diffusion coefficient D of the gas in the absorbent can be obtained only by calculation. Experimental results showed that \documentclass{article}\pagestyle{empty}\begin{document}$(H\sqrt {k_1 D} )\,_{{\rm N}_{\rm 2} {\rm O}_{\rm 4} } $\end{document} decreases with increasing ionic strength I, however, without a clear indication of any ion-specific effects. This decrease does not appear to be caused simply by a reduction in solubility (salting out effect), or in diffusion coefficient, but at least, to the same extent, through a decrease of the rate constant k with increasing electrolyte content in the absorbent. The measurements permitted the determination of the gas-based salting out parameter for N2O4. The investigations on the absorption of N2O3 in water and in an Na2SO4 solution showed no experimentally detectable influence of dissolved salts on \documentclass{article}\pagestyle{empty}\begin{document}$(H\sqrt {k_1 D} )\,_{{\rm N}_{\rm 2} {\rm O}_{\rm 3} } $\end{document}. The numerical value of \documentclass{article}\pagestyle{empty}\begin{document}$(H\sqrt {k_1 D} )\,_{{\rm N}_{\rm 2} {\rm O}_{\rm 3} } $\end{document} is six times that of \documentclass{article}\pagestyle{empty}\begin{document}$(H\sqrt {k_1 D} )\,_{{\rm N}_{\rm 2} {\rm O}_{\rm 4} } $\end{document}.  相似文献   

2.
The heterogeneous bulk polymerization of acrylonitrile initiated by AIBN has been studied by means of an improved dilatometric technique and a new method of analysis, where the initial reaction rate (vw)0 results from the intercept of a straight line in a \documentclass{article}\pagestyle{empty}\begin{document}$ \frac {\ln \left( 1 \hbox{---} {\rm U} \right)} {{\rm e}^{{- 0,5} {\rm k}_{\rm s}{\rm t} \hbox{---} 1}}$\end{document} versus t plot. It has been found that the initial reaction rate is proportional to the square root of the initial catalyst concentration S0. The ratio of the rate coefficients of propagation and termination\documentclass{article}\pagestyle{empty}\begin{document}$\frac { {\rm k}_{\rm a} } { {\rm k}_{ {\rm w}^{2} } } $\end{document} could be calculated from the slope of a straight line passing through the origin in a plot of (vw)0 versus \documentclass{article}\pagestyle{empty}\begin{document}$\sqrt { {\rm S}_{0} }$\end{document} and yielded a value of 280 mol 1?1.  相似文献   

3.
The literature on the reaction of cytochrome c with the radiolytically generated radicals \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm e}_{{\rm eq}}^ -,^. {\rm OH,}^{\rm .} {\rm H,CO}_2^ -,{\rm O}_{\rm 2}^ -,{\rm Br}_{\rm 2}^ - $\end{document} and various organic radicals is reviewed. It would appear that negatively charged radicals, aided by the electric field of cytochrome c, react at the exposed haem edge. Uncharged organic radicals also react at this site. \documentclass{article}\pagestyle{empty}\begin{document}$ ^. {\rm H} $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ ^. {\rm OH} $\end{document} are likely to reduce the prosthetic group indirectly by a tunnelling mechanism.  相似文献   

4.
Experimental results on the rate of lateral flame spread and time for piloted ignition under an externally imposed radiant flux were analyzed with a simple theroretical model. The data were developed from a radiant panel apparatus that considers a wall mounted sample with a flux distribution \documentclass{article}\pagestyle{empty}\begin{document}$ (\dot q_{\rm e} ^{\prime \prime } ) $\end{document} of 5 W cm?2 at the ignited end to 0.2 W cm?2 at the other end. It is shown that after an appropriate preheating time (flux exposure time before sample is ignited) the rate of flame spread (Vf) results can be correlated by \documentclass{article}\pagestyle{empty}\begin{document}$ V_{\rm f} - {\textstyle{1 \over 2}} = C\left( {\dot q''_{{\rm o,ig}} - \dot q_{\rm e} ^{\prime \prime } } \right) $\end{document} where C is a material ‘constant’ and \documentclass{article}\pagestyle{empty}\begin{document}$ \dot q''{\rm }_{{\rm o,ig}} $\end{document} is minimum flux for piloted ignition—also a material (and configuration) constant. An extension of this model demonstrates that Vf can also be expressed in terms of an ‘ignition temperature’ and the surface temperature of the material. Both correlations are derivable from a single flame spread experiment. Results are presented for a number of typical wood and plastic materials.  相似文献   

5.
A new gel permeation chromatography (GPC) method is proposed for determining the unperturbed end-to-end distance, \documentclass{article}\pagestyle{empty}\begin{document}$ \left({\frac{{r_0 ^2 }}{M}} \right)^{0.5} $\end{document}, of polymers of known molecular weights, Mn and Mw. This method requires the value of \documentclass{article}\pagestyle{empty}\begin{document}$ \left({\frac{{r_0 ^2 }}{M}} \right)^{0.5} _{{\rm ps}} $\end{document} of polystyrene which was determined through viscometry to be 0.735 \documentclass{article}\pagestyle{empty}\begin{document}$ \left({\frac{{{\rm {\AA}}^2-{\rm mole}}}{{gm}}} \right)^{0.5} $\end{document} Polyvinyl chloride (PVC) was chosen to illustrate the method and \documentclass{article}\pagestyle{empty}\begin{document}$ \left({\frac{{r_0 ^2}}{M}} \right)^{0.5} _{pvc} $\end{document} was found to be 0.99 from GPC data which is in agreement with the result obtained from viscometry, \documentclass{article}\pagestyle{empty}\begin{document}$ \left({\frac{{r_0 ^2}}{M}} \right)^{0.5} _{pvc} $\end{document} = 1.01. All \documentclass{article}\pagestyle{empty}\begin{document}$ \left({\frac{{r_0 ^2 }}{M}} \right)^{0.5} $\end{document} values were determined at 30°C. The advantage to this method lies in its speed and economy of materials.  相似文献   

6.
A method for measuring the unperturbed radius of gyration and the degree of long-chain branching in Gaussian-distribution polymers is proposed. Polyvinyl chloride (PVC) and polyvinyl acetate (PVAc) were selected to illustrate the method. It was observed that PVC samples prepared by homogeneous and heterogeneous polymerizations exhibit the same degree of long-chain branching. This conclusion is supported by viscometric data. The polydispersity ratios (Mw/Mn) indicate that both types of polymerizations would yield a very small amount of total branching (long chain and short chain.) The calculated unperturbed radius of gyration of linear PVC samples was found to be 0.185 \documentclass{article}\pagestyle{empty}\begin{document}$ \left( {\frac{{{\rm \dot A}^{\rm 2} {\rm mole}}}{{{\rm gm}}}} \right) $\end{document}, and that of PVAc was determined to be 0.107 \documentclass{article}\pagestyle{empty}\begin{document}$ \left( {\frac{{{\rm \dot A}^{\rm 2} {\rm mole}}}{{{\rm gm}}}} \right) $\end{document}. The value obtained for PVC is shown to be in agreement with the value determined from the viscometric method as described in our previous work.  相似文献   

7.
Empirical correlations of flow properties of poly(vinyl chloride) were made using data reported by a number of investigators. Correlation was made by plotting the reduced variable viscosity η/η0 versus \documentclass{article}\pagestyle{empty}\begin{document}$ (\eta _0 \dot \gamma \bar M_w )/(_\rho RT) $\end{document} or \documentclass{article}\pagestyle{empty}\begin{document}$ (\eta _0 \dot \gamma \bar M_w ^{0.5} )/(_\rho RT) $\end{document} for unplasticized PVC and versus \documentclass{article}\pagestyle{empty}\begin{document}$ (\eta _0 \dot \gamma \bar M_w ^{0.5} )/(_\rho RTW_2 ^a ) $\end{document} with polymer concentration, W2, for PVC containing plasticizer.  相似文献   

8.
Simulation and optimal design of the reactor for the seeded continous emulsion polymerization process have been done in this work. An internal mixer (Toray Hi-Mixer) as seeder connected with a stirred tank is designed to correlate conversion, molecular weight, and MWD with the model simulation proposed. An optimal mean residence time of seeder \documentclass{article}\pagestyle{empty}\begin{document}$(\bar \theta _s)_c$\end{document} is found to lie between \documentclass{article}\pagestyle{empty}\begin{document}$(\bar \theta _1)$\end{document} and tin, where \documentclass{article}\pagestyle{empty}\begin{document}$(\bar \theta _1)_{{\rm opt}} = (3aS_0 /2r\eta N_a \alpha)^{3/5}$\end{document} and tin = 1.57(aS0/riηNA)3.5. The optimal design of the process is performed according to the above relations under several polymerization conditions. In general, the increase in number of stages inside the seeder can reduced the volume of CSTR for a required production. Molecular weight of products is increased by increasing the number of stages inside the seeder, by decrasing the concentration of the initiator, and by increasing the concentration of the emulsifier under the optimal conditons.  相似文献   

9.
Acetoacetaldehyde Dimethylacetal as a Starting Material for Syntheses The use of acetoacetaldehyde dimethylacetal (1) leads to the introduction of the group \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm =}\mathop {\rm C}\limits^{\mathop |\limits^{{\rm CH}_{\rm 2}}} ---{\rm CH}_{\rm 2} ---{\rm CH(OCH}_{\rm 3} {\rm)}_{\rm 2} $\end{document} by reaction at the carbonyl carbon atom, and of the group CH3–CO–CH2–CH?or CH3–CO–CH?CH– by reaction at the acetalic carbon atom. For synthetic purposes it is important that methanol can be splitten off from 1, and the acetoacetaldehyde enol ether methoxybutenone (2) is generated. With catalytic amounts of acids or bases an equilibrium mixture with 70% 1 and 30% 2 is formed; 2 shows the higher reactivity of a vinylogous acetic ester. 1 as well as 2 can be attacked at each of the four carbon atoms; ring closure reactions were observed with the carbon atom 2 or 4 alone, or with two carbon atoms (6 possibilities, prevalent 2 + 4), and occasionally by participation of two molecules of 1 or 2.  相似文献   

10.
Solvatochromism of 4′-Dialkylamino-α-Cyano-Stilbene-4-Diazonium-Salts 4′-Dialkylamino-stilbene-4-diazonium-salts are deep coloured compounds and give strong solvatochromism. 4′-Diethylamino-α-cyano-stilbene-4-diazonium-tetrafluoroborate was investigated in 52 different solvents and 3 binary solvent mixtures. With increasing solvent basicity the longest wave lenght absorption maximum (\documentclass{article}\pagestyle{empty}\begin{document}$ \nu^{\hspace{-5pt}\sim}_{\rm max} $\end{document}) decrease. Complex formation by crown ethers causes a decrease of \documentclass{article}\pagestyle{empty}\begin{document}$ \nu^{\hspace{-5pt}\sim}_{\rm max}$\end{document}, too. In solvents with dielectricity constants higher than about 15 dissociation effects superpose solvatochromism. The summary of experimental dates support the approach of specific nucleophilic solvatation of diazonium ions.  相似文献   

11.
The various plots for estimating the ratio of rate constants characteristic for primary radical termination, k5/k1k2, have been examined systematically. Apart from the special case d ≡ k3k6/k52 = 1 there is no exact linear relationship between the general quantity \documentclass{article}\pagestyle{empty}\begin{document}${\rm Y \equiv (\sqrt {c_S} c_{M}/v_{Br})^{n}}$\end{document} and the general variable \documentclass{article}\pagestyle{empty}\begin{document}${\rm X \equiv (\sqrt {c_S} /c_M)^{s} (v_{Br}/c_M^{2} )^{1 - s}}$\end{document}. In any case, however, Y can he expressed as a power series of X. Therefore the best way to obtain the most favourable linear representation of Y as a function of X is to choose s and n according to the condition that the coefficient of the term quadratic in X has to disappear (n ? 2 s + d = 0) and the coefficient of the X3-term also equals 0 or is at least close to 0. Under these conditions even those data can be represented in an almost perfect linear form which show variations of the quantity \documentclass{article}\pagestyle{empty}\begin{document}$({\rm \sqrt{c_{s}}c_{M}/v_{Br})}$\end{document} by a factor of \documentclass{article}\pagestyle{empty}\begin{document}$\sqrt{2}$\end{document} or more for different initiator concentrations cs. If additionally allowance is made for the consumption of monomer by the initiation process the desired ratio of rate constants, ks/k1k2, is obtained from the plot of Y vs. X according to the equation The application of this method is illustrated using an example from literature.  相似文献   

12.
A kinetic study of the hydrolysis of 39.8 wt.-% acetyl cellulose acetate has been made as a function of pH and temperature over the pH range of 2.2–10 and temperature range of 23–95°C. The hydrolysis reaction was carried out on highly porous membranes under quasihomogeneous conditions and the data have been treated as a pseudo-first-order reaction in acetyl concentration. The reaction can be represented by the equation \documentclass{article}\pagestyle{empty}\begin{document}$k_1 {\rm = }\;k_{\rm H ^ +} \left[ {{\rm H^+}} \right]{\rm +}k_{\rm OH^-}\left[ {{\rm OH}^ - } \right] + k_{\rm H_2O} $\end{document}, and where \documentclass{article}\pagestyle{empty}\begin{document}$k_{\rm H} ^ + {\rm = 5}{\rm .24}\;{\rm x 10}^{\rm 5} {\rm exp }\left\{ {{\rm ‐ 16}{\rm .4 x 10}^{\rm 3} /RT} \right\},{\rm }k_{{\rm OH}} ^ ‐ {\rm = 1}{\rm .55}\;{\rm x 10}^{\rm 4} {\rm exp }\left\{ {{\rm ‐ 8}{\rm .1 x 10}^{\rm 3} /RT} \right\}$\end{document}, and \documentclass{article}\pagestyle{empty}\begin{document}$k_{\rm H_2O} {= 4.25\;\times 10}^{- 2} {\rm exp }\left\{ {{- 11.5 \times 10^3 /RT}} \right\}$\end{document} (where the quantities in brackets are activities of the ions shown).  相似文献   

13.
Non-monotonic continuous curves of torque as a function of shaft speed, M(N), have been obtained for a high molecular weight high density polyethylene (HDPE) from measurements obtained with a torque rheometer (Haake Rheocord). Previous papers have given theoretical demonstration of the non-monotonic character of the shear stress-shear rate function, s(\documentclass{article}\pagestyle{empty}\begin{document}$ {\rm \dot \gamma } $\end{document}), which makes it possible to explain the extrusion behavior of a high molecular weight HDPE. In capillary rheometry, it is not possible to obtain the values of s(\documentclass{article}\pagestyle{empty}\begin{document}$ {\rm \dot \gamma } $\end{document}) into the “well zone” of this function because the compressibility of the polymer creates a phenomenon of oscillation in the barrel affecting the die output flow rate and the pressure loss. The M(N) function measured by the Haake Rheocord is a complete representation of the s(\documentclass{article}\pagestyle{empty}\begin{document}$ {\rm \dot \gamma } $\end{document}) function, although the capillary rheometer only gives a partial representation of this function. The transformation of the M(N)function into s(\documentclass{article}\pagestyle{empty}\begin{document}$ {\rm \dot \gamma } $\end{document}) is quite difficult because of the complex geometry of the Haake Rheocord measuring head. The “critical points” of the s(\documentclass{article}\pagestyle{empty}\begin{document}$ {\rm \dot \gamma } $\end{document}) function in the capillary rheometer (appearance of oscillations), can be correlated to the maximum points of the M(N) function in the Haake Rheocord at constant temperature. The non-monotonic aspect of the s(\documentclass{article}\pagestyle{empty}\begin{document}$ {\rm \dot \gamma } $\end{document}) function provides an important technological application: extrusion of a high molecular weight HDPE at an increased flow rate at low temperatures.  相似文献   

14.
Methyl methacrylate was grafted onto wool in the presence of an aqueous dioxane solution with a hydrogen peroxide-sodium thiosulphate initiator system, using the optimum conditions found in our previous paper19. It was stated that up to 90% conversion for the rate of reaction the following equation holds: \documentclass{article}\pagestyle{empty}\begin{document}${\rm R}_{\rm p} = - \frac{{{\rm d}\left[ {\rm M} \right]}} {{{\rm dt}}} = {\rm K} \cdot \left[ {\rm M} \right]^{1.5}$\end{document} where Rp is the overall rate of the graft polymerization, and [M] is the monomer concentration at the time t. The degree of polymerization of the isolated poly(methyl methacrylate) was found to be linearly proportional with the monomer concentration [M]. Investigations of the effect of the ratio of solvent to monomer concentration [S]/[M] on the reciprocal of the degree of polymerization showed that there was no chain transfer caused by the solvent dioxane. The number average molecular weight M?n of the polymer separated from the grafted wool was found to be within the range of 3–15.9 × 106 as determined by viscosimetry. The molecular weight distribution of the isolated poly(methyl methacrylate) samples was determined by turbidimetric titration. The following relationship was established between the volume fraction of the non-solvent, γ and the number average molecular weight M?n. of poly(methyl methacrylate): \documentclass{article}\pagestyle{empty}\begin{document}$\gamma = - 0.0285 + \frac{{50.54}}{{\sqrt[3]{{\overline M _n }}}}. $\end{document} The molecular weight distribution curves were found to be rather homogeneous indicating approximately the same chain length of the grafted poly(methy1 methacrylate) on the wool backbone. It was stated before33 that the number average molecular weight could be determined from the inflection point of the turbidimetric curves. This method can be used for determining the molecular weight of all kinds of poly(methy1 methacrylate) occurring in practice.  相似文献   

15.
Kinetic Studies on the Autoxidation of Olefins The oxidabilities \documentclass{article}\pagestyle{empty}\begin{document}$ {{{\rm k}_{\rm p} } \mathord{\left/ {\vphantom {{{\rm k}_{\rm p} } {\sqrt {2{\rm k}_{\rm t} } }}} \right.\kern-\nulldelimiterspace} {\sqrt {2{\rm k}_{\rm t} } }} $\end{document} at 50°C were determined for 37 olefins, using chlorobenzene as the solvent and azodiisobutyronitril as the initiator. In the group of acyclic aliphatic olefins the oxidability rises with increasing number of alkyl groups bound to the double bond. This is also true for cyclic olefins, but in this case the ring size has also a great influence on the oxidability. So the oxidability decreases from five-ring to eight-ring cycloolefins. Particularly high oxidabilities are found in the case of olefins in which a phenyl group is attached directly to the C C-double bond.  相似文献   

16.
The stress-strain behavior of a material exhibiting Andrade creep (for which the creep compliance is linear in the cube-root of time) has been calculated for loading at constant strain rate \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm \varepsilon}\limits^{\rm .} $\end{document} and at constant stress rate \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop \sigma \limits^. $\end{document} for the limiting case of linear viscoelastic behavior and at constant \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop \sigma \limits^. $\end{document} for one type of nonlinear viscoelastic response. The recoverable strain after the stress has been removed has also been calculated for these three cases. The results of the calculations are compared with experiment.  相似文献   

17.
The rheological properties of five types of concentrated polyamic acid and polyimide solutions are characterized by non-Newtonian shear viscosity η(\documentclass{article}\pagestyle{empty}\begin{document}$ {\rm \dot \gamma} $\end{document}) and primary normal stress coefficient Ψ1(\documentclass{article}\pagestyle{empty}\begin{document}$ {\rm \dot \gamma} $\end{document}) measurements over a wide range of shear rates. Onset of non-Newtonian flow of the polyamic acid solutions was observed in the shear rate range 30 to 400s?1 and of the fully imidized polyimide solution at below 3 × 10?2s?1. Significant viscoelastic properties exemplified by normal stresses were observed in all the solutions. The solution rheology results are discussed in the context of spin coating for the deposition of thin films. The relative magnitude of effects of non-Newtonian flow on the dynamics of spin coating is assessed with a Deborah number characteristic of the flow.  相似文献   

18.
Experimental data are reported on the volumetric behavior of four mixtures of ethane and hydrogen sulphide containing 77.55, 63.52, 39.95, and 21.42% ethane in the temperature range from 50° to 125°C at pressures to about 5,000 psia. Compressibilities were fitted to the Benedict-Webb-Rubin equation of state for each mixture with an average deviation of 0.47%, although the variation of the coefficients with composition was not in accord with Benedict's mixing rules. Simultaneous evaluation of all coefficients other than γ using an equation of the form \documentclass{article}\pagestyle{empty}\begin{document}${\rm k}_{\rm m} = \sum\limits_{{\rm i} = 1}^{\rm N} {\sum\limits_{{\rm j} = 1}^{\rm N} {{\rm x}_{\rm i} \,\,{\rm x}_{\rm j} \,\,{\rm k}_{{\rm ij}} } } $\end{document} and the data from 639 experimental points gave an average deviation of 0.645% and a maximum of 5.61%.  相似文献   

19.
Potassium persulfate modes of thermal decomposition and reactions with ethyl acrylate in aqueous solution at 50°C in nitrogen atmosphere have been investigated. It has been found that the rate of persulfate decomposition may be expressed as ?d(S2O)/dt ∝ (S2O)1.00 ± 0.06 × (M)0.92±0.05 while the steady state rate of polymerization (Rp) is given by Rp ∝ (S2O)0.50 ± 0.50 × (M)1.00 ± 0.06 in the concentration ranges of the persulfate, 10?3?10?2 (m/L), and monomer (M), 4.62?23.10 × 10?2 (m/L), i.e., within its solubility range. In the absence of monomer, the rate of persulfate decomposition was slow and first order in persulfate at the early stages of the reaction when the pH of the solution was above 3.0. The separating polymer phase was a stable colloid at low electrolyte concentrations even in the absence of micelle generators. It has been shown that the oxidation of water soluble monomeric and oligomeric radicals by the S2O ions in the aqueous phase, viz., \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm M}_j^ \cdot + {\rm S}_2 {\rm O}_8^{2 - } \to {\rm M}_j - {\rm O} - {\rm SO}_3^ - + {\rm SO}_4^{ \cdot - } $\end{document} is not kinetically significant in this system. It has been found that the reaction \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm M} + {\rm S}_2 {\rm O}_8^{2 - } \rightarrow{k}{\rm M} - {\rm O} - {\rm SO}_3^ - + {\rm SO}_4^{ \cdot - } $\end{document} would also lead to chain initiation at the outset of the polymerization reaction. k has been estimated as 5.41 × 10?5 (L/m/s) at 50°C. Taking kp as 103 (L/m/s), kt has been estimated as 0.168 × 106 (L/m/s). The partition confficient (β) of the monomer between the polymer phase and the aqueous phase was found to be 16 ± 2, at 50°C. The rate constant for persulfate ion dissociation has been found as 1.40 × 10?6 s?1 at 50°C.  相似文献   

20.
The thermomechanical spectra of two series of amorphous polyolefins represented by $\rlap{--} [{\rm CH}_2 )_m {\rm - C}\left( {{\rm CH}_3 } \right)_2 \rlap{--} ]_n$ and $\rlap{--} [\left( {{\rm CH}_2 } \right)_m \bond {\rm C}\left( {{\rm CH}_3 } \right)\left( {{\rm C}_2 {\rm H}_5 } \right)\rlap{--} ]_n$, where m = 1, 2, and 3, are presented from ?180°C to above the glass transition temperatures. The polymers were obtained by cationic polymerization of α-olefins. The mechanical spectra show a maximum in glass transition temperature and secondary transition temperature for the second member of each series. This maximum is interpreted in terms of a proposed geometrical intermolecular interlocking which is considered to be at a maximum for the second member of the series and serves to restrict the submolecular motions associated with the transitions. The proposal is discussed in terms of its consequences upon free volume, density, cohesive energy density, and chain flexibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号