首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 359 毫秒
1.
相比于钛合金、不锈钢、钴基合金等传统生物医用金属材料,镁合金不仅具有生物可降解特性,而且其弹性模量与人体骨骼很接近,不容易产生"应力屏蔽",被誉为"新一代先进生物材料"。但镁合金在人体内降解速率过快,由此产生的力学失稳和过量降解产物在体内的代谢吸收隐患限制了其在外科植介入医疗领域的大量推广应用。而可生物降解或可吸收的天然和合成高分子(聚合物)是全球量大面广的一类质轻、多功效、生物安全性好的生物医用材料,若将其作为可降解镁合金表面的特种防护涂层并解决好两者表界面之间的生物功能性和力学相容性,将是开发先进镁合金材料及其应用的重要发展方向。本文综述了生物可降解的镁基合金表面天然及合成高分子涂层的最新研究进展,并对其未来的研发及应用发展趋势提出展望。  相似文献   

2.
生物医用镁及镁合金可降解吸收,具有良好的生物相容性,弹性模量与人体骨接近,是理想的人体植入物材料。在体液环境中,医用镁合金腐蚀速率较快,常常导致植入物过早失效。对镁合金表面进行适当改性,可调控合金降解速率、提高生物相容性。最常见的表面改性方法是在镁合金表面生成保护性涂层,这些涂层主要包括可降解高分子涂层和一些无机涂层。综述了近几年可生物降解镁及镁合金的表面改性涂层及改性技术的最新研究动态,探讨了镁及镁合金表面制备无机涂层和可降解高分子涂层的一些改性方法;简要介绍了阳极氧化、微弧氧化、离子注入、溶胶-凝胶、等离子喷涂及化学沉积等表面改性方法的原理,并比较其优缺点;提出了可生物降解镁及镁合金表面改性涂层研究中面临的问题,并展望了未来发展方向。  相似文献   

3.
镁及镁合金由于其良好的生物相容性和可降解性能,在生物医用材料领域具有巨大的应用潜力。然而,过快的降解速率限制了其临床应用。羟基磷灰石(HA)涂层具有良好的骨诱导性和骨传导性,可以有效地延缓镁及镁合金的腐蚀速率。但是,单一的羟基磷灰石涂层不能满足镁基植入物的使用寿命要求,因此需对其进一步的改性。本文从生物相容性、可降解性以及力学性能等方面综述镁合金表面以羟基磷灰石为基础,以高分子材料、无机材料以及离子掺杂而成的可降解镁基HA复合涂层的发展和研究现状。  相似文献   

4.
近年来,镁合金作为“可降解医用金属材料”越来越受到研究人员的青睐。然而,镁合金的腐蚀降解较快导致的力学衰减显著、材料与骨愈合的适配性减弱是当前限制其临床应用的瓶颈性问题。微弧氧化作为一种有效的减缓镁合金降解速率措施,具有工艺简单、成膜效率高、膜层整体综合性能优异等优点,实现了降解速度可调控与改善生物相容性双重功能。本文主要从微弧氧化(MAO)涂层形成机制及膜层降解机理出发,综述了生物医用镁合金微弧氧化涂层研究进展;详细阐述了微弧氧化涂层镁合金的膜层形成/破裂机制;系统地归纳了微弧氧化工艺参数和涂层降解性能、生物相容性的本质联系;揭示了自封孔型氧化膜的生长机制、封孔物质的沉积过程及其保留在微孔内的原因;概述了复合表面处理技术的膜层物相特征及仿生溶液环境下降解行为规律。最后,展望了医用镁合金微弧氧化涂层的未来发展方向。  相似文献   

5.
近年来,镁及镁合金由于其生物可降解性和良好的生物相容性,在医疗器械领域的应用获得了迅速的发展,然而过快的降解速率限制了其在临床上的应用。可生物降解有机高分子涂层是一种降低镁及镁合金降解速率的有效表面改性方法,同时还可赋予镁及镁合金医疗器械多种功能性。首先综述了可降解有机高分子涂层对镁及镁合金耐腐蚀性能和生物相容性的影响。可降解聚合物涂层能阻碍腐蚀性介质与基体的接触,从而延长其降解时间。而涂层对基体的保护提供了碱性较弱的环境,更利于细胞的生长增殖;同时涂层随着基体一起降解,可降低聚合物长期存在生物体内可能引发炎症反应的风险。此外,对聚合物涂层在骨科以及心血管支架领域的应用以及进展进行了综述。一方面,可降解聚合物涂层能显著延长镁及镁合金在生物体内的作用时间;另一方面,涂层可以作为载体材料通过携带具有不同功能的试剂或者药物实现医疗器械的功能化,如促进骨愈合和药物的可控释放。因此,可降解聚合物涂层在镁和镁合金器械领域必将起到无可替代的作用。  相似文献   

6.
镁及其合金具有可降解的特点,同时具有良好的生物相容性。与其他医用金属材料相比,其力学性能和弹性模量最为接近于人体骨的,被认为是近十年新一代最有潜力的生物医用植入材料之一。但是镁合金的耐腐蚀性较差,在很大程度上限制了其在医学领域的应用与发展。在镁合金表面涂覆羟基磷灰石生物陶瓷涂层,不仅能够提高镁合金的耐腐蚀性,更能够赋予其优良的生物活性。介绍了镁合金和羟基磷灰石的性能特点,综述了在镁合金表面制备羟基磷灰石涂层的工艺方法,并对镁基羟基磷灰石生物陶瓷涂层作为生物医用材料的未来发展方向进行了展望。  相似文献   

7.
镁及其合金作为新一代生物医用可降解材料,具有良好的经济性、力学性能、生物相容性、可降解性能,在骨科、心血管科、消化科等领域具有广阔的应用前景。镁合金具有较高的化学活性,因此其降解速率较快,力学性能的维持受限,植入时可能发生的细菌感染会引发炎症和腐蚀加速等问题,因此需要通过表面改性来制备多功能一体化的涂层。综述了医用可降解镁合金作为接骨板、螺钉、血管支架、胃肠吻合器、胆管支架等植入材料的应用现状及最新研究成果。讨论了医用可降解镁合金在植入生物体时面临的析氢、pH升高、腐蚀加速、力学性能衰减、稀土元素毒性及内膜增生等具体问题,在此基础上,考察了化学转化、等离子喷涂、微弧氧化、聚合物涂层等4种镁合金表面改性技术的最新研究动态。结合体内试验和体外试验,概述了表面改性对镁合金安全性、耐蚀性、抗菌性、生物相容性等方面的影响,并简要对比了几种表面改性技术的优缺点。最后展望了医用可降解镁合金表面改性技术的发展方向。  相似文献   

8.
随着医疗技术的高速发展,镁及镁合金因其良好的生物相容性和生物力学性能,在骨科植入物和心血管支架领域具有巨大的应用前景。然而,在生理环境中的高降解率限制了镁及镁合金的临床应用。从镁合金的耐腐蚀性及生物相容性角度,综述了近年来化学转化涂层、微弧氧化涂层、钙磷涂层及可降解聚合物涂层在镁合金表面改性中的应用及特点,并展望了未来表面改性在生物医用镁合金领域的发展方向及应用前景。  相似文献   

9.
医用镁合金表面改性研究进展   总被引:8,自引:0,他引:8  
由于镁及其合金具有良好的生物相容性和力学相容性,降低镁合金过快的腐蚀速度成为其作为生物材料应用的关键,医用镁合金表面改性已成为新一代生物材料的研究重点。介绍医用镁合金的发展历程,重点讨论镁合金表面生物活性陶瓷(如羟基磷灰石(HA))、阳极氧化膜、可降解高分子聚合物(如聚乳酸(PLA)、PLGA、壳聚糖)、惰性生物陶瓷涂层(如TiO2、Al2O3、ZrO2)、化学转化膜(氟化膜、稀土转化膜)和金属镀层(如Ti、Zn)制备、耐蚀性及其生物相容性,并指出其发展趋势。  相似文献   

10.
Zn元素是人体必需的微量元素,理论上Zn的标准电位适中,因此降解速率优良。近年来,Zn基合金成为继Mg合金与Fe合金后的一种新型的可降解生物医用材料。目前,可降解生物医用Zn基合金材料的成分设计、加工制备、降解原理、生物相容性、力学性能各方面的研究都刚刚起步,尚未形成系统性的研究成果。本文就目前可降解生物医用Zn基金合金元素和几种典型合金进行综述,并对合金未来发展指出了方向。  相似文献   

11.
镁合金具有良好的生物相容性及可降解性能,因而有潜力应用于生物医用领域.最近几年,生物医用镁合金的研究得到了广泛的重视.镁合金用于生物医用植入材料的主要问题是耐蚀性差,提高耐蚀性能的方法主要有调整合金成分和采用适当的表面处理技术.本文对镁合金作为生物医用材料的腐蚀机理和影响腐蚀的因素进行了介绍,并总结了最近几年在提高生物医用镁合金耐蚀性能方面取得的进展,最后对生物医用镁合金研究中需要解决的问题和研究趋势进行了分析.  相似文献   

12.
Biomedical metals are widely used as implant materials in the human or animal body to repair organs and restore function, such as heart valves, meninges, peritoneum and artificial organs.Alloying element affects the microstructure, mechanical property, corrosion resistance and wear resistance, but also influences the antibacterial and biological activity.Recently, antibacterial metal alloys have shown great potential as a new kind of biomedical materials, in which Cu has been widely used as antibacterial agent element.In addition, biodegradable metal alloys, including magnesium alloy and zinc alloy, also have attracted much attention worldwide.Cu was also used as alloying element to adjust the degradation rate.Thus, the role of Cu in the alloy design will be very important for the development of new alloy.In this paper, we summarized the recent research results on the Cu-containing metal alloy for biomedical application and hoped that this review would give more suggestions for the further development of biomedical metal alloy.  相似文献   

13.
镁合金具有优良的机械性能,与人体生物相容性好,尤其是具有可生物降解的特点,是一种很有前途的生物降解医用材料。综述了生物医用镁合金的研究进展,并阐明了其在人体内的降解机理及提高镁合金耐蚀性的改进方法,详细介绍了研究镁合金耐蚀性的方法,并指明了研究中存在的问题和未来发展方向。  相似文献   

14.
医用锌及锌合金有望成为新一代可降解骨植入物材料来促进骨缺损的修复。概述了可降解医用锌基材料的优势,包括较好的生物安全性和抗菌效果、能促进植入部位周围血管和新骨的生成以及骨相关基因的表达能力。在此基础上,从基底材料、细胞种类及实验结果等方面系统总结了近年来关于可降解医用锌基材料生物相容性和降解行为的研究。同时,归纳了可降解医用锌在临床修复骨缺损方面所面临的主要问题和挑战,包括较差的力学性能和较强的细胞毒性。可降解医用锌较差的力学性能可以通过合金化进行改善,概述了多种新型医用锌合金的力学性能及其生物相容性。表面改性是提高可降解医用锌基表面生物相容性和调控降解的有效手段。从基底样品、表面改性手段、使用的细胞或动物模型以及细胞相容性和降解行为等方面,综述了近年来可降解锌基骨植入材料表面改性的研究现状,提出了可降解锌基骨植入材料表面改性目前所面临的难点问题,包括传统表面改性手段加剧了锌离子的释放或在表面改性后可降解医用锌的生物相容性改善功效不足,以及未来的发展方向。  相似文献   

15.
从火花放电方面归纳整理了镁合金微弧氧化膜层的形成机理,并分析了膜层结构。在此基础上,结合国内外研究现状,阐述了预处理、电解质和添加剂以及电参数(电压、电流模式和脉冲频率)和封孔技术对镁合金微弧氧化膜层耐蚀性和生物相容性的影响。着重分析了电解质和添加剂的种类、浓度对膜层和生物性能的影响机制,其中电解质包括碱性硅酸盐和磷酸盐电解液等,添加剂包括甘油、氟化物、羟基磷灰石和纳米粒子等。研究发现,碱性磷酸盐电解质的加入可以降低膜层腐蚀速率,促进骨整合和细胞附着过程,羟基磷灰石、Ca、P等具有生物活性和对人体有益的粒子作为添加剂加入,可以显著提高膜层的耐蚀性和生物相容性。最后,基于研究现状,对镁合金微弧氧化技术在生物医用方面的发展进行了展望。  相似文献   

16.
可降解医用镁基生物材料的研究进展   总被引:1,自引:0,他引:1  
生物体内可降解吸收材料是生物材料发展的重要方向,由于金属材料具有较好的强度和塑韧性,因此金属基可降解吸收材料具有重要的临床应用价值。镁是所有金属材料中生物力学性能与人体骨最接近的金属材料,具有理想的生物力学相容性,因此,镁合金作为可降解生物材料具有巨大的应用潜力。首先介绍了镁基材料作为生物体内可降解植入材料的优点,然后简要回顾了镁基可降解生物材料的早期研究情况,同时系统地介绍和总结了目前的研究进展和遇到的挑战,最后展望了镁合金医用材料的应用前景和发展方向。  相似文献   

17.
The integration of biodegradable and bioabsorbable magnesium implants into the human body is a complex undertaking that faces major challenges. Candidate biomaterials must meet both engineering and physiological requirements to ensure the desired properties. Historically, efforts have been focused on the behavior of commercial magnesium alloys in biological environments and their resultant effect on cell-mediated processes. Developing causal relationships between alloy chemistry and microstructure, and effects as a cellular behavior can be a difficult and time-intensive process. A systems design approach has the power to provide significant contributions in the development of the next generation of magnesium alloy implants with controlled degradability, biocompatibility, and optimized mechanical properties, at reduced time and cost. This approach couples experimental research with theory and mechanistic modeling for the accelerated development of materials. The aim of this article is to enumerate this strategy, design considerations, and hurdles for developing new cast magnesium alloys for use as biodegradable implant materials.  相似文献   

18.
生物可降解锌合金是新型的具有发展前景的人体骨植入物材料。讨论了生物可降解锌合金在力学性能、腐蚀降解行为和生物相容性等方面作为骨植入物材料的开发潜力和应用前景。重点综述了近年来不同合金元素的选择和添加量对生物可降解锌合金的强韧化影响、生物可降解性及生物相容性评价。同时,讨论了塑性变形过程对生物可降解锌合金力学性能的影响。另外,还介绍了生物可降解锌合金的体内外降解行为、生物腐蚀机理、生物相容性及其要求。明确了各种增强手段对生物可降解锌合金的影响,并分析讨论了各种手段的可取与不足之处。针对当前制备技术存在的问题,结合已有研究成果,指明生物锌合金未来的发展方向。生物锌合金的强化方法,如合金化、改变添加量、变形加工操作、表面改性处理等,可以有效提高纯锌的综合性能。锌合金的降解速率适中,不产生氢气袋,降解产物能起到保护层的作用,有助于提高细胞黏附性,增强抗菌能力。锌合金的生物相容性与锌离子的释放量密切相关。制备ZnP涂层的表面改性技术能够有效降低锌离子释放量,进而改善生物相容性。目前,生物可降解锌合金在生物体植入物中已经取得部分进展,但是,其力学性能和生物相容性仍是较长一段时间内努力的方向,开发新的增强手段及体内动态模拟试验和性能评估方法也都是未来的重要发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号