首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydrolysis of soluble proteins in an anaerobic, saline (24 g dm?3 NaCl) and mesophilic (37 °C) environment was studied. The inhibitory effect of a volatile fatty acid, acetic acid (HAc), on the hydrolysis rate and hydrolytic biomass activity for a model saline wastewater with a high protein load (total organic carbon, 1153 mg dm?3 and 1572 mg dm?3 proteins) was studied. Initial inhibitor concentrations were tested in the range of 0–2000 mg dm?3 HAc. The microbiological characterization was performed using a total microorganism count by epifluorescence, and hydrolytic bacterial activity was determined by plate count. The protein hydrolysis was modeled according to first order kinetics. The effect of biomass on hydrolysis was analyzed by varying its concentration in the range of 42–210 mg dm?3 volatile suspended solids. The following apparent hydrolysis kinetic constants (Kh) for proteins at 37 °C were obtained: 1.3, 0.8, 0.6, 0.2 and 0.1 d?1 for initial concentrations of 250, 500, 750, 880, and 1000 mg dm?3 HAc, respectively. At concentrations of HAc greater than 1000 mg dm?3, total inhibition of hydrolysis was observed. The intrinsic hydrolysis constant ( ) at 37 °C, without inhibition, was 2.3 d?1. The hydrolysis kinetic constant was not affected by the biomass concentration. The hydrolysis kinetics constant was filted to three models: Luong, Levenspiel and non‐competitive inhibition. The model that best represented the experimental data was Luong, obtaining an inhibition constant (KI) of 1087 mg dm?3 of HAc and the exponent γ = 0.54. The hydrolysis was inhibited by the presence of HAc, which corresponds to an intermediate compound of the anaerobic process. Copyright © 2004 Society of Chemical Industry  相似文献   

2.
β-D-Glucosidase from Trichoderma harzianum C1R1 consists of several isocomponents having isoelectric points in the pH range of 4.85-7.50. All the components exhibit both cellobiase and 4-nitrophenyl β-D-glucosidase (4NPGase) activity. The enzyme affinity for cellobiose (Km = 3.92 mmol dm?3) is 14.5 times weaker than for 4NPG (Km = 0.27 mmol dm?3). The hydrolysis of both substrates is competitively inhibited by glucose, the inhibition of 4NPG hydrolysis (K1 = 2.00 mmol dm?3) being about 4.2 times stronger compared to the hydrolysis of cellobiose (K1 = 8.43 mmol dm?3). The 4NPG hydrolysis is also competitively inhibited by the presence of cellobiose and D-glucono-1,5-lactone (Ki(cellobiose) = 5.00 mmol dm?3; Ki(D-glucono-1,5-lactone) = 22 μmol dm?3). The optimal hydrolysis conditions are the same for both substrates (pH 4.5,55° C). The half-lives of thermal inactivation at 61° C are 27 and 10min for cellobiase and 4NPGase, respectively.  相似文献   

3.
The sorption of linuron on bentonite desiccated at 110°C untreated, and acid‐treated with H2SO4 solutions over a concentration range between 0.25 M and 1.00 M from aqueous solution at 25°C has been studied by using batch experiments. In addition, column experiments were carried out with the bentonite sample treated with the 1.00 M H 2SO4 solution [B‐A(1.00)] by using two aqueous solutions of linuron of different concentrations (C=4.97 mg dm−3 and C=7.63 mg dm−3 ). The experimental data points have been fitted to the Langmuir equation in order to calculate the sorption capacities (Xm) of the samples; Xm values range from 0.02 g kg−1 for the untreated bentonite [B‐N] up to 0.20 g kg−1 for the sample acid‐treated with the 1.00 M H2 SO4 solution. The removal efficiency (R ) has also been calculated; R values ranging from 15.86% for the [B‐N] sample up to 41.54% for [B‐A(1.00)]. The batch experiments show that the acid‐treated bentonite is more effective than the natural bentonite in relation to sorption of linuron. The column experiments show that the B‐A(1.00) sample might be reasonably used in removing linuron, the column efficiency increasing from 61.8% for the C=7.63 mg dm−3 aqueous solution of linuron up to 77.6% for the C=4.97 mg dm−3 one. © 1999 Society of Chemical Industry  相似文献   

4.
The graft copolymerization of acrylamide (AAm) and ethylmethacrylate (EMA) monomers onto cellulose has been carried out using ceric ammonium nitrate (CAN) as initiator in presence of nitric acid at (25 ± 1)°C and varying feed molarity from 7.5 × 10?2 mol dm?3 to 60.0 × 10?2 mol dm?3 at fixed feed composition (fAAm = 0.6). The graft yield (%GY) has shown a linear increasing trend upto a feed molarity of 37.5 × 10?2 mol dm?3. The composition of grafted copolymer chains was found to be constant (FAAm = 0.56) during feed molarity variation but shown variations with feed composition (fAAm) and reaction temperature. The grafting parameters have shown increasing trends up to 7.5 × 10?3 mol dm?3 concentration of ceric (IV) ions and decreased on further increasing the concentration of ceric (IV) ions beyond 7.5 × 10?3 mol dm?3. The IR and elemental analysis data were used to determine the composition of grafted chains (FAAm) and reactivity ratio of acrylamide (r1) and ethylmethacrylate (r2) comonomers. The reactivity ratio for acrylamide (r1) and ethylmethacrylate (r2) has been found to be 0.7 and 1.0 respectively, which suggested for an alternate arrangement of average sequence length of acrylamide (mM?1) and ethylmethacrylate (mM?2) in grafted chains. The rate of graft copolymerization of comonomers onto cellulose was found to be proportional to square concentration of comonomers and square root to the concentration of ceric (IV) ions. The energy of activation (ΔEa) of graft copolymerization was found to be 9.57 kJ mol?1 within the temperature range of 20–50°C. On the basis of experimental findings, suitable reaction steps have been proposed for graft copolymerization of selected comonomers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2546–2558, 2006  相似文献   

5.
Kinetic studies on the removal of phosphate by adsorption onto oyster shell powder have been investigated at 24 °C. The results showed that the equilibrium occurred in 10 min and the equilibrium data followed the Freundlich isotherm. Freundlich constants were found to be kf, 1.4 × 10?2, and n, 0.71. The phosphate removal was not influenced by pH over the range 5.0–10.5. Continuous agitation studies at 24 °C and 530 rpm reached equilibrium after 7.7 days, when 24 g dm?3 of oyster shell powder reduced the phosphate concentration from 50 to 7.0 mg dm?3. The Lagergren rate constant for the slow adsorption process was observed to be 3.81 × 10?4 dm3 min?1. Comparison with calcium carbonate, GR grade, showed that oyster shell powder and CaCO3 behave more or less in the same way. Copyright © 2004 Society of Chemical Industry  相似文献   

6.
This study focuses on a high-temperature operation in electrodialysis of salt solutions and studies the effect of temperature on limiting current density and mass transfer. Experiments were conducted under various conditions of temperature (T), varying from 15 to 90°C; of dialysate concentration (Cd), varying from 5 × 10?3 to 3 × 10?2M ; and of dialysate velocity (ud), varying from 0.206 to 2.44 cm s?1. A least squares fitting of the experimental data on limiting current density (Ilim) yields an Arrhenius equation as follows: The molar flux N? (mol cm?2 s?1), initial concentration (C0; M ) and temperature (T; °C) were found to have the following relationship: N?/C0 is slightly increased with increasing temperature ranging from 25 to 70°C.  相似文献   

7.
BACKGROUND: The anaerobic degradation kinetics of volatile fatty acids (VFA) in a saline (24 g NaCl dm?3) and mesophilic (37 °C) medium was studied under batch test conditions. The acetate production kinetics without inhibition by propionic, butyric and valeric acids was determined. The inhibition of acetate production during syntrophic acetogenesis by VFA and pH was studied. The acetogenesis without inhibition was modelled using a Monod equation. The pH inhibition was represented by a Michaelis pH function, while the inhibition by acetic acid (HAc) was represented by a non‐competitive model. RESULTS: The specific maximum degradation rate and saturation constant (kmax, VFA, KS, max) values were (5.89, 15.95), (7.97, 25.99) and (7.75 g VFA g?1 volatile suspended solids day?1, 11.52 mg VFA dm?3) for propionic, butyric and valeric acids respectively, with maximum velocity at pH 7. The inhibition constants (KI, HAc) were 1295, 671 and 572 mg HAc dm?3 for propionic, butyric and valeric acids respectively. CONCLUSION: VFA and pH can be inhibitory for acetogenesis under these conditions. Copyright © 2008 Society of Chemical Industry  相似文献   

8.
Turnip roots, which are readily available in Mexico, are a good source of peroxidase, and because of their kinetic and biochemical properties have a high potential as an economic alternative to horseradish peroxidase (HRP). The efficiency of using turnip peroxidase (TP) to remove several different phenolic compounds as water‐insoluble polymers from synthetic wastewater was investigated. The phenol derivatives studied included phenol, 2‐chlorophenol, 3‐chlorophenol, o‐cresol, m‐cresol, 2,4‐dichlorophenol and bisphenol‐A. The effect of pH, substrate concentration, amount of enzyme activity, reaction time and added polyethylene glycol (PEG) was investigated in order to optimize reaction conditions. A removal efficiency ≥85% was achieved for 0.5 mmol dm?3 phenol derivatives at pH values between 4 and 8, after a contact time of 3 h at 25 °C with 1.28 U dm?3 of TP and 0.8 mmol dm?3 H2O2. Addition of PEG (100–200 mg dm?3) significantly reduced the reaction time required (to 10 min) to obtain >95% removal efficiency and up to 230% increase in remaining TP activity. A relatively low enzyme activity (0.228 U dm?3) was required to remove >95% of three phenolic solutions in the presence of 100–200 mg dm?3 PEG. TP showed efficient and fast removal of aromatic compounds from synthetic wastewaters in the presence of hydrogen peroxide and PEG. These results demonstrate that TP has good potential for the treatment of phenolic‐contaminated solutions. © 2002 Society of Chemical Industry  相似文献   

9.
The potentiostatic deposition of copper from acid sulfate solutions (0.50 mol dm?3 Na2SO4 at pH 2 and 298 K) was studied at four porosity grades (10, 30, 60 and 100 pores per linear inch, ppi) of reticulated vitreous carbon (RVC) rotating cylinder electrode (RCE). The rate of removal of cupric ions from a 200 cm3 volume of electrolyte was examined as a function of the grade of RVC foam, the electrode potential and the initial cupric ion concentration. For the 100 ppi material, the product of the mass transport coefficient and the electroactive area per unit volume of electrode (kmAe) was equal to 0.28 s?1 at a potential of ?500 mV vs SCE for an initial cupric ion concentration of 0.85 mmol dm?3 and a constant rotation speed of 1500 rev min?1. Under the experimental conditions, an initial dissolved copper concentration of 63.5 ppm could be reduced to <0.1 ppm in approximately 60 min using a 100 ppi RVC RCE. SEM studies showed some non‐uniform deposition of metal due to heterogeneous nucleation of copper together with the development of rough deposits. Copyright © 2004 Society of Chemical Industry  相似文献   

10.
The adsorption of cadmium and zinc ions on natural bentonite heat-treated at 110°C or at 200°C and on bentonite acid-treated with H2SO4 (concentrations: 0·5 mol dm?3 and 2·5 mol dm?3), from aqueous solution at 30°C has been studied. The adsorption isotherms corresponding to cadmium and zinc may be classified respectively as H and L types of the Giles classification which suggests the samples have respectively a high and a medium affinity for cadmium and zinc ions. The experimental data points have been fitted to the Langmuir equation in order to calcualte the adsorption capacities (Xm) and the apparent equilibrium constants (Ka) of the samples; Xm and Ka values range respectively for 4·11 mg g?1 and 1·90 dm3 g?1 for the sample acid-treated with 2·5 mol dm?3 H2SO4 [(B)-A(2·5)] up to 16·50 mg g?1 and 30·67 dm3 g?1 for the natural sample heat-treated at 200°C [B-N-200], for the adsorption process of cadmium, and from 2·39 mg g?1 and 0·07 dm3 g?1, also for B-A(2·5), up to 4·54 mg g?1 and 0·45 dm3 g?1 [B-N-200], for the adsorption process of zinc. Xm and Ka values for the heat-treated natural samples were higher than those corresponding to the acid-treated ones. The removal efficiency (R) has also been calculated for every sample; R values ranging respectively from 65·9% and 8·2% [B-A(2·5)] up to 100% and 19·9% [B-N-200], for adsorption of cadmium and zinc.  相似文献   

11.
A study of the effect of organic loading rate on the performance of anaerobic digestion of two‐phase olive mill solid residue (OMSR) was carried out in a laboratory‐scale completely stirred tank reactor. The reactor was operated at an influent substrate concentration of 162 g chemical oxygen demand (COD) dm?3. The organic loading rate (OLR) varied between 0.8 and 11.0 g COD dm?3 d?1. COD removal efficiency decreased from 97.0% to 82.6% when the OLR increased from 0.8 to 8.3 g COD dm?3 d?1. It was found that OLRs higher than 9.2 g COD dm?3 d?1 favoured process failure, decreasing pH, COD removal efficiency and methane production rates (QM). Empirical equations described the effect of OLR on the process stability and the effect of soluble organic matter concentration on the total volatile fatty acids (TVFA)/total alkalinity (TAlk) ratio (ρ). The results obtained demonstrated that rates of substrate uptake were correlated with concentration of biodegradable COD, through an equation of the Michaelis–Menten type. The kinetic equation obtained was used to simulate the anaerobic digestion process of this residue and to obtain the theoretical COD degradation rates in the reactor. The small deviations obtained (equal to or lower than 10%) between values calculated through the model and experimental values suggest that the proposed model predicts the behaviour of the reactor accurately. Copyright © 2007 Society of Chemical Industry  相似文献   

12.
This work reports the viability and modelling of the removal of Cr(VI) from polluted groundwaters by means of ion exchange using the resin Lewatit MP‐64. Feed groundwaters that contained Cr(VI) at an average concentration of 2431 mg dm?3 and 1187 mg dm?3 of chloride and 1735 mg dm?3 of sulfate as main anions were acidified to a pH of 2.0 prior to the removal process. Dynamic experiments were carried out in a fixed bed column with feed waters at flow rates in the range of 2.78 × 10?7 m3 s?1 to 5.55 × 10?7 m3 s?1. Regeneration was achieved with NaOH (2 mol dm?3). From the experimental results, the equilibrium of the ion exchange reaction was successfully modelled, obtaining an equilibrium constant (KAB) = 44.90. Finally, a mass balance that included mass transfer resistances in the liquid and solid phases was developed and from the comparison between simulated and experimental data the value of the effective intraparticle diffusivity (Ds) was determined as 1.43 × 10?12 m2 s?1. Copyright © 2004 Society of Chemical Industry  相似文献   

13.
Sodium metabisulphite (Na2S2O5) has been found to initiate the aqueous polymerisation of methyl methacrylate (MMA) at 35°C in phosphate buffer solutions of pH 6.85 and a constant ionic strength (μ) of the media in an inert atmosphere of pure nitrogen. The reaction has a well defined induction period which is a function of the concentrations of the initiator, of the monomer and also of temperature. The polymerisation is signalled by the sudden appearance of a haze at the end of the induction period in a given run, and the polymer separates out as a coarse precipitate during the progress of the polymerisation reactions. When the conversion is over 50 per cent complete, the polymerisation media looks like a thick curd if the monomer concentration is relatively high. The rate of polymerisation is found to decrease with conversion or time in a given run, and the initial rate (vp), obtained by extrapolating the linear yield/time versus time curves to zero time, keeping the conversion below 10 percent, is found as where (I) = initiator concentration in the range, (0.26 to 3.94) × 10?3 (mol dm?3), and (M) = monomer concentration in the range 0.019 to 0.141 (mol dm?3). At high initiator concentrations, the rate of polymerisation is found to decrease. In a given run, the viscosity average molecular weights (M v) of the polymers is found to increase quickly with a conversion of up to 25 to 30 percent, and then slowly with the further increase in conversion. (Mv) however is found to decrease with the increase of the initiator concentrations at a given conversion but increases with the increase of the monomer concentrations. Hydroquinone inhibits the polymerisation reactions, whereas air is found to increase the induction period, but later enhances the polymerisation rate in the same run. It has been shown that the bisulphite addition reaction of MMA is not important under the experimental conditions, and the polymerisation occurs by the free radical mechanism. The rate constant (k2) of the reaction, has been estimated from the analytical data as, k2 = 14.62 × 10?2 (dm3 mol?1 s?1) at 35°C.  相似文献   

14.
The development of multicompartment rotating cylinder electrode reactors for the removal of metal from aqueous solutions is described. Such reactors approximate to a cascade of continuously stirred tank reactors and the results illustrate that, for electrodeposition of copper powder from acid sulphate solutions, high overall conversions (about 98%) may be realised, with low exit metal concentrations (about 1 mg dm–3) and reasonable current efficiencies (65–87%).Nomenclature A electroactive surface area (cm2) - C in inlet concentration of metal (mg dm–3) - C out outlet concentration of metal (mg dm–3) - C reactor reactor concentration of metal (mg dm–3) - f R fractional conversion - (f R)n overall fractional conversion - F Faraday=96 500 (C mol–1) - I L limiting current (A) - k l mass transfer coefficient (cms–1) - m weight of metal (g) - M molecular weight of metal - n number of reactor elements in the cascade - N volumetric flow rate (cm3 s–1) - z electron change - dm/dt rate of removal of metal (gs–1) This paper was presented, in part, at the Electrochemical Reaction Engineering Symposium, Southampton University, April (1979).  相似文献   

15.
The anaerobic biodegradation of phenol in the unsaturated zone beneath landfill sites has been simulated by percolating an artificial landfill leachate containing phenol through columns of disturbed Lower Greensand. The columns were inoculated with microbes from a laboratory-scale landfill simulator. Phenol degradation was observed at concentrations up to 8.2 g dm?3 but decomposition was increasingly inhibited above 3.0 g dm?3. Maximum rates of decomposition were observed at concentrations between 1.5 and 3.0 g dm?3. The Vmax value at a flow rate of 0.5 cm3 h?1 was 1.05 g dm?3h?1 and the Km value was 450 mg phenol dm?3. Zero- (r0) and first-order (r1) rate constants increased with increasing flow rate. The data are used to calculate the rates of phenol degradation which might be obtained in real landfill.  相似文献   

16.
A 450 dm3 pilot‐scale upflow anaerobic sludge blanket (UASB) reactor was used for the treatment of a fermentation‐based pharmaceutical wastewater. The UASB reactor performed well up to an organic loading rate (OLR) of 10.7 kg COD m?3 d?1 at which point 94% COD removal efficiency was achieved. This high treatment efficiency did not continue, however and the UASB reactor was then operated at lower OLRs for the remainder of the study. Specific methanogenic activity (SMA) tests were, therefore, carried out to determine the potential loading capacity of the UASB reactor. For this purpose, the SMA tests were carried out at four different initial acetate concentrations, namely 500 mg dm?3, 1000 mg dm?3, 1500 mg dm?3 and 2000 mg dm?3 so that substrate limitation could not occur. The results showed that the sludge sample taken from the UASB reactor (OLR of 6.1 kg COD m?3 d?1) had a potential acetoclastic methane production (PMP) rate of 72 cm3 CH4 g?1 VSS d?1. When the PMP rate was compared with the actual methane production rate (AMP) of 67 cm3 CH4 g?1 VSS d?1 obtained from the UASB reactor, the AMP/PMP ratio was found to be 0.94 which ensured that the UASB reactor was operated using its maximum potential acetoclastic methanogenic capacity. In order to achieve higher OLRs with desired COD removal efficiencies it was recommended that the UASB reactor should be loaded with suitable OLRs pre‐determined by SMA tests. © 2001 Society of Chemical Industry  相似文献   

17.
The simultaneous removal of formaldehyde and ammonium in aerobic cultures and the inhibitory effect of formaldehyde on ammonium oxidation were investigated. The influence of a co‐substrate, methanol, on formaldehyde biodegradation and on the nitrification process was also evaluated. Formaldehyde was completely removed at all concentrations tested (30–3890 mg dm?3) in assays with that compound as the single carbon source and in the presence of methanol as co‐substrate. An initial formaldehyde biodegradation rate of 4.6 g CH2O g?1 VSS d?1 was obtained for 2000 mg CH2O dm?3 as single carbon source compared with a rate of 7.3 g CH2O g?1 VSS d?1 when methanol was added. Formaldehyde was inhibitory to the nitrification process at initial concentrations higher than 350 mg dm?3. Increasing the initial formaldehyde concentration or adding a co‐substrate such as methanol resulted in a longer lag phase before ammonium oxidation and caused a decrease in the degree of nitrification. Nitrification was completely inhibited at initial formaldehyde concentrations higher than 1500 mg dm?3. Copyright © 2004 Society of Chemical Industry  相似文献   

18.
The biomass growth, lactic acid production and lactose utilisation kinetics of lactic acid production from whey by Lactobacillus casei was studied. Batch fermentation experiments were performed at controlled pH and temperature with six different initial whey lactose concentrations (9‐77 g dm?3) in a 3 dm3 working volume bioreactor. Biomass growth was well described by the logistic equation with a product inhibition term. In addition, biomass and product inhibition effects were defined with corresponding power terms, which enabled adjustment of the model for low‐ and high‐substrate conditions. The Luedeking‐Piret equation defined the product formation kinetics. Substrate consumption was explained by production rate and maintenance requirements. A maximum productivity of 2.5 g dm?3 h?1 was attained with an initial lactose concentration of 35.5 g dm?3. Copyright © 2006 Society of Chemical Industry  相似文献   

19.
Production of L ‐methionine by immobilized pellets of Aspergillus oryzae in a packed bed reactor was investigated. Based on the determination of relative enzymatic activity in the immobilized pellets, the optimum pH and temperature for the resolution reaction were 8.0 and 60 °C, respectively. The effects of substrate concentration on the resolution reaction were also investigated and the kinetic constants (Km and Vm) of immobilized pellets were found to be 7.99 mmol dm?3 and 1.38 mmol dm?3 h?1, respectively. The maximum substrate concentration for the resolution reaction without inhibition was 0.2 mol dm?3. The L ‐methionine conversion rate reached 94% and 78% when substrate concentrations were 0.2 and 0.4 mol dm?3, respectively, at a flow rate of 7.5 cm3 h?1 using the small‐scale packed bed reactor developed. The half‐life of the L ‐aminoacylase in immobilized pellets was 70 days in continuous operation. All the results obtained in this paper exhibit a practical potential of using immobilized pellets of Aspergillus oryzae in the production of L ‐methionine. © 2002 Society of Chemical Industry  相似文献   

20.
A Fourier-transform infrared (FT-IR) spectroscopic method has been developed for assaying the bile salt-stimulated human milk lipase (BSSL, EC3.1) catalyzed hydrolysis of triolein in AOT reversed micelles in iso-octane. At 37°C in 50 mmol dm?3 AOT the molar absorbtivities for the carbonyl stretching frequencies for triolein (at 1751 cm?1) and oleic acid (at 1714 cm?1) were 1646 dm3 mol?1 cm?1 and 743 dm?3 mol?1 cm?1, respectively. The rate was linearly dependent upon the concentration of enzyme in the water pool up to 10 mg cm?3 and maximum activity was observed at a ratio (w0) of [H2O]:[AOT] = 16·7. Using these conditions, and in the presence of 10 mmol dm?3 sodium taurocholate (TC), the derived Michaelis–Menten parameters Vmax and Km were 57·5 μmol min?1 mg?1 and 5·53 mmol dm?3, respectively. These results are compared with those obtained in an oil-in-water microemulsion system and are discussed in terms of the relative partitioning of the enzyme and the substrate in the aqueous and oil phases and the interfacial concentration of the substrate in the two systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号