首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is well established that the ferrite grain size of low-carbon steel can be refined by hot rolling of the austenite at temperatures below the nonrecrystallization temperature (T nr ). The strain retained in the austenite increases the number of ferrite nuclei present in the initial stages of transformation. In this work, a C-Mn-Nb steel has been heavily deformed by torsion at temperatures below the determined T nr for this steel. After deformation, specimens are cooled at a constant cooling rate of 1 °C/s, and interrupted quenching at different temperatures is used to observe different stages of transformation. The transformation kinetics and the evolution of the ferrite grain size have been analyzed. It has been shown that the stored energy due to the accumulated deformation is able to influence the nucleation for low undercoolings by acting on the driving force for transformation; this influence becomes negligible as the temperature decreases. At the early stages of transformation, it has been observed that the preferential nucleation sites of ferrite are the austenite grain boundaries. At the later stages, when impingement becomes important, ferrite coarsening accompanies the transformation and a significant reduction in the number of the ferrite grains per unit volume is observed. As a result, a wide range of ferrite grain sizes is present in the final microstructure, which can influence the mechanical properties of the steel.  相似文献   

2.
3.
A phase-field simulation is performed to study the kinetics of austenite to ferrite (γ → α) transformation in a low-carbon steel during continuous cooling. Emphasis is placed on the influence of nucleation, along with ferrite grain coarsening behind the transformation front, on microstructural evolution. Results show that grain coarsening is significant even before all nucleation has been completed and occurs via two different coarsening mechanisms, grain boundary migration and ferrite grain crystallographic rotation, both of which can be clearly observed occurring as the simulated microstructure evolves. For some grains, sudden growth jumps are predicted by the model—a phenomenon that has been observed before by synchrotron X-ray diffraction. This study quantitatively demonstrates the phenomenon that increasing cooling rate leads to nucleation off initial austenite grain boundaries, which is also verified by studying the morphology of ferrite grains as predicted using different nucleation mode assumptions. A relationship between nucleation site distribution and the nucleation rate is demonstrated by computer simulation.  相似文献   

4.
The effect of austenite yield strength on the transformation to martensite was investigated in Fe-10 pct Ni-0.6 pct C alloys. The strength of the austenite was varied by 1) additions of yttrium oxide particles to the base alloy and 2) changing the austenitizing temperature. The austenite strength was measured at three temperatures above theM s temperature and the data extrapolated to the experimentally determinedM s temperature. It is shown that the austenite yield strength is determined primarily by the austenite grain size and that the yttrium oxide additions influence the effect of austenitizing temperature on grain size. As the austenite yield strength increases, both theM s temperature and the amount of transformation product at room temperature decrease. The effect of austenitizing temperature on the transformation is to determine the austenite grain size. The results are consistent with the proposal1 that the energy required to overcome the resistance of the austenite to plastic deformation is a substantial portion of the non-chemical free energy or restraining force opposing the transformation to martensite.  相似文献   

5.
The degree of ferrite grain refinement that can be reached in low-carbon microalloyed steels by thermomechanical processing is limited, to a certain extent, by the grain coarsening which can take place behind the transformation front. The coarsening of ferrite grains is the result of two different mechanisms: elimination of ferrite grains produced by normal grain growth after full impingement on the austenite grain boundary plane and/or coalescence between different ferrite grains with close orientation formed from the same crystallographic variant. The lack of experimental data to support either process is due to the experimental difficulties encountered when analyzing the phenomenon. Some transmission electron microscope (TEM) observations reveal that the ferrite grains formed along a prior grain boundary in deformed austenite are separated by a mixture of low and high angle grain boundaries upon impingement. In the present work, the electron backscattered diffraction (EBSD) technique has been applied to investigate the microstructural evolution during transformation, with special emphasis placed on the α-α grain boundary character as a means of investigating the contribution of coalescence/grain growth to coarsening.  相似文献   

6.
刘祥  杜群力  李新 《钢铁》2019,54(9):116-120
 为了解加热制度对Nb Ti微合金钢的奥氏体晶粒长大和析出行为的影响,采用OM、TEM和EDS分析技术,研究了Nb Ti微合金钢在不同加热温度和保温时间的奥氏体晶粒长大行为,以及微合金元素碳氮化物析出行为。结果表明,随加热温度升高,奥氏体晶粒尺寸逐渐长大,当加热温度超过1 200 ℃时奥氏体晶粒尺寸快速长大。随保温时间延长,奥氏体晶粒尺寸逐渐长大,当保温时间超过2.0 h时奥氏体晶粒尺寸快速长大。EDS分析显示Nb Ti钢中的析出物为(Nb,Ti)(C,N)复合相,随着加热温度升高和保温时间延长,析出相体积分数减少,尺寸增大,从而减弱对奥氏体晶粒的细化作用;Nb Ti微合金试验钢合适的加热温度范围为1 150~1 200 ℃,保温时间低于2.0 h。  相似文献   

7.
 弹簧钢的原奥氏体晶粒大小对其力学性能和疲劳性能有重要影响,采用光学显微镜研究了51CrV4、52CrMoV4、60Si2CrVA、60Si2MnA 4种高速列车用弹簧钢的原奥氏体晶粒在加热后的长大倾向,结合透射电镜的观察分析了4种弹簧钢具有不同奥氏体晶粒粗化温度的原因。试验结果表明,化学成分对其奥氏体晶粒长大倾向具有重要影响,弹簧钢中加入Cr、V、Mo能有效阻止原奥氏体晶粒的长大,奥氏体晶粒的粗化温度与微合金碳氮化合物的固溶温度有关。 在800~1100℃温度范围内加热,51CrV4中的奥氏体晶粒长大趋势最小,52CrMoV4和60Si2CrVA次之,60Si2MnA最大。  相似文献   

8.
Based on the minimum degree of disregistry mechanism in oxide metallurgy, laboratory and industrial research have been conducted on intragranular acicular ferrite (IAF) induced by microalloying elements in austenite. Based on the chemical compositions of DH36 steel and Mg, Al, Ti, V, Nb microalloyed steel, experimental results show that in ingots' organization, both V and Nb can induce IAF, but when the adding sequence was Al-Mg-Ti, smaller and dispersion inclusions were formed in austenite. When the Mg content was 0.005 wt%, the inclusion structure induced IAF in austenite is as follows: MgO and Al2O3 forms the core and TixOy adheres to the Al-Mg complex inclusions to produce smaller particle size and dispersions of Al, Mg, Ti complex inclusions. Finally, upon lowering the temperature, carbonitrides of Ti, V, and Nb were precipitated on the outermost layer of the inclusions. These carbonitrides with small disregistry contribute to induce intragranular acicular ferrite.  相似文献   

9.

This study is to comprehensively clarify the effect of Nb addition on the particles, austenite grain growth, microstructure evolution, and toughness in the heat-affected zone after high heat input welding at 400 kJ cm−1 for shipbuilding steel plates with Mg deoxidation containing 0.002 and 0.016 wt pct Nb. The Nb addition enhances the dissolution of small particles (< 20 nm) and the coarsening of large particles (> 20 nm) during welding period of T > 1300 °C, because the stability of (Ti, Nb)(C, N) particles is reduced caused by the weaker bonding of Ti–C, Nb–N, and Nb–C. With the temperature above 1300 °C during welding, the austenite grain growth rate increases with Nb addition because the particle pinning force reduces by the small-sized particle dissolution and large-size particle coarsening. Nb addition hinders the ferrite transformation with the transformation temperature decreasing from 700–535 °C to 670–520 °C, due to the increased PAG size. Thus, with Nb addition, the microstructures change from high-temperature fine polygonal ferrite in small prior austenite grains (PAGs) to low-temperature coarse intragranular bainite ferrite in large PAGs, reducing the high-angled grain boundary density from 1.3 to 0.5 μm−1 and increasing the effective grain size from 10.4 to 17.6 μm. Thus, the toughness at − 40 °C decreases from 127 to 58 J.

  相似文献   

10.
Abstract

The grain growth kinetics of delta-ferrite was investigated in a model Fe–Al alloy in which a small volume fraction of austenite particles is used to control grain growth. The specimens were heated to different temperatures in the two phase (delta-ferrite+austenite) region and held for times between 5 min and 288 h followed by water quenching. The coarsening kinetics of the austenite particles could be described both in terms of bulk (t1/3) and grain boundary (t1/4) diffusion. The growth of the delta-ferrite grains was dominated by the pinning effect of the austenite particles. When the particle pinning pressure was much larger than the driving force for grain growth, the growth of delta-ferrite grains was completely pinned. Under conditions in which the particle pinning force and the driving force for grain growth were comparable, ferrite grain growth occurred at a rate which is proportional to the rate of coarsening of the austenite particles. When the particle pinning force is smaller than the driving force, grain growth occurs at a rate which is lower than that expected without pinning.

On a examiné la cinétique de croissance de grain de ferrite delta dans un alliage modèle de Fe-Al dans lequel une petite fraction volumique de particules d’austénite est utilisée pour contrôler la croissance de grain. On a chauffé les échantillons à différentes températures dans la région à deux phases (ferrite delta + austénite) et on les a maintenus pour des durées allant de 5 minutes à 288 heures, puis on les a trempés à l’eau. On pourrait décrire la cinétique de grossissement des particules d’austénite tant en fonction de la diffusion volumique (t1/3) que de la diffusion aux joints de grain (t1/4). La croissance des grains de ferrite delta était dominée par l’effet d’épinglage des particules d’austénite. Lorsque la pression d’épinglage de particule était beaucoup plus grande que la force motrice pour la croissance de grain, la croissance des grains de ferrite delta était entièrement épinglée. Dans les conditions où la force d’épinglage de particule et la force motrice pour la croissance de grain étaient comparables, la croissance de grain de ferrite se produisait à une vitesse proportionnelle à la vitesse de grossissement des particules d’austénite. Lorsque la force d’épinglage de particule était plus petite que la force motrice, la croissance de grain se produisait à une vitesse plus faible que la vitesse sans épinglage.  相似文献   

11.
This work describes the effect of Nb supersaturation in austenite, as it applies to the strain-induced precipitation potential of Nb(CN), on the suppression of the static recrystallization of austenite during an isothermal holding period following deformation. Four low carbon steels, microalloyed with Nb, were used in this investigation. Three of the steels had variations in Nb levels at constant C and N concentrations. Two steels had different N levels at constant C and Nb concentrations. The results from the isothermal deformation experiments and the subsequent measurement of the solution behavior of Nb in austenite show that the recrystallization-stop temperature (T RXN) increases with increasing Nb supersaturation in austenite. Quantitative transmission electron microscopy analysis revealed that the volume fraction of Nb(CN) at austenite grain boundaries or subgrain boundaries was 1.5 to 2 times larger than Nb(CN) volume fractions found within the grain interiors. This high, localized volume fraction of Nb(CN) subsequently led to high values for the precipitate pinning force (F PIN). These values forF PIN were much higher than what would have been predicted from equilibrium thermodynamics describing the solution behavior of Nb in austenite.  相似文献   

12.
This paper presents multiphase (MP) treatments of a low‐C, low‐Si cold rolled steel. Despite the much lower content of Si compared to a typical TRIP steel, up to about 8 pct of retained austenite (γr) with 1.2 % carbon content can be obtained. Increasing prior cold deformation (i.e. decrease of parent austenite grain size) accelerates the transformation to bainite resulting in a decrease of the volume fraction of residual austenite (γr + martensite). Tensile strength of MP steel intercritically annealed at high temperature increases with higher cold reduction degree due to the smaller grain size of the present phases. On the contrary, the ductility and strength‐ductility balance deteriorate because the banded structure becomes more pronounced and the γr volume fraction diminishes. Decreasing intercritical annealing temperature results in an increasing γr fraction and a uniform distribution of second phases. Hence, the ductility and strength‐ductility balance are improved. Crystallographic preferred orientation is evident in the ferrite and martensite and its extent increases with higher cold deformation.  相似文献   

13.
The results of an experimental study on the grain coarsening behavior, M23C6 carbide precipitation, and secondary MC carbide precipitation kinetics in UDIMET 520 are presented. Primary MC carbides and M (C, N) carbonitrides strongly influence the grain growth, with their dissolution near 1190 °C and 1250 °C, respectively, resulting in two distinct grain coarsening temperatures (GCTs). M23C6 carbides precipitate in the alloy over a wide range of temperatures varying between 600 °C and 1050 °C. A discrete M23C6 grain boundary carbide morphology is observed at aging temperatures below 850 °C. Secondary MC carbides formed at temperatures ranging between 1100 °C and 1177 °C, in specimens in which primary MC dissolution had been obtained at solution treatment temperatures of 1190 °C to 1250 °C. A schematic time-temperature-transformation (TTT) diagram for understanding the microstructure and precipitation inter-relationships in UDIMET 520 alloy is also presented.  相似文献   

14.
The response of austenite to thermomechanical treatment is investigated in two series of niobium microalloyed steels. Optical and electron metallographic techniques were used to follow the austenite recrystallization and carbonitride precipitation reactions in these steels. The first series of steels contained a constant level of 0.05Nb, with carbon levels varying from 0.008 to 0.25 pct. It was found that a lower carbon concentration results in faster austenite recrystallization, due to a smaller carbonitride supersaturation, which leads to a reduced precipitate nucleation rate. The second series of steels was designed with a constant carbonitride supersaturation, by simultaneously varying the Nb and C concentrations while maintaining a constant solubility product. In these steels, the recrystallization kinetics increase as the volume fraction of Nb(C, N) is reduced and/or as the precipitate coarsening rate is increased. The volume fraction of carbonitrides increases as the Nb: (C+12/14 N) ratio approaches the stoichiometric ratio of approximately 8:1. The precipitate coarsening rate was shown to increase with increasing amounts of niobium remaining in solution in the austenite (i. e., “excess” Nb after precipitation). As expected, recrystallization proceeds more slowly at lower temperatures and after a reduced amount of deformation. An experiment to determine whether Nb atoms dissolved in the austenite could exert a significant solute-drag effect on the recrystallization reaction indicated that 0.20Nb in solution could reduce the rate of recrystallization compared to a Nb-free C-Mn steel. However, this solute effect was smaller than the retarding effect which 0.01Nb can have when it is precipitated in the form of carbonitrides on the austenite substructure after rolling.  相似文献   

15.
A model for simulating the austenitization of ultra-high strength steel during hot stamping is developed using a cellular automata approach. The microstructure state before quenching can be predicted, including grain size, volume fraction of austenite, and distribution of carbon concentration. In this model, a real initial microstructure is used as an input to simulate austenitization, and the intrinsic chemical difference is utilized to describe the ferrite and pearlite phases. The kinetics of austenitization is simulated by simultaneously considering continuous nucleation, grain growth, and grain coarsening. The UHSS is reduced to a Fe-Mn-C ternary system to calculate the driving force during extent growth in ferrite. The simulation results show that the transformation of ferrite to austenite can be divided into three stages in the condition of a heating rate of 10 K (?263 °C)/s. The transformation rate is determined by two factors, carbon concentration and temperature. The carbon concentration plays a major role at the early stages, as well as the temperature is the main factor at the later stages. The A c3 calculated is about 1073 K (800 °C) close to the measured value [1067.1 K (794.1 °C)]. Austenite grain coarsening was calculated by a curvature-driven model. The simulated morphology of the microstructure agrees well with the experimental result. Most of the dihedrals of the grain boundaries at the triple junctions are close to 120 deg. Finally, tensile tests were implied, as dwelling time increased from 3 to 10 minutes, the austenite grain size increased from 6.95 to 9.44 μm while the tensile strength decreased from 276.4 to 258.3 MPa.  相似文献   

16.
The microstructure and creep behavior of a 3 pct Co modified P911 steel and standard P911 steel were examined. It was shown that the nanoscale M23Ccarbides and MX carbonitrides in the 3 pct Co modified P911 steel are not susceptible to significant coarsening under creep conditions. Also, coarsening simulations of M23Cparticles were performed for both steels. The rates of lath and particle coarsening in the P911 + 3 pct Co steel are remarkably lower than those in the P911. Increased stability of a tempered martensite lath structure in the 3 pct Co modified P911 steel provides enhanced creep resistance at an exceptionally high temperature of 923 K (650 °C).  相似文献   

17.
The microstructural parameter(s) controlling the critical cleavage fracture stress, σF, of fully pearlitic eutectoid steel have been investigated. Independent variation of the pearlite interlamellar spacing,S p, and the prior austenite grain size were accomplished through heat treatment. Critical cleavage fracture stresses were measured on bluntly-notched bend specimens tested over the temperature range -125 °C to 23 °C. The cleavage fracture stress increased with decreasingS p, and was independent of prior austenite grain size. Fine pearlitic microstructures exhibited temperature, strain-rate, and notched-bar geometry independent values for σF, consistent with propagation-controlled cleavage fracture. Coarse pearlitic specimens exhibited temperature-dependent values for σF over a similar temperature range. Inclusion-initiated fractures were generally located at or beyond the location of the peak normal stress in the bend bar, while cracking associated with pearlite colonies was observed to be closer to the notch than the predicted peak stress location. The calculated values for σF were independent of both the type and location of initiation site(e. g., inclusion, pearlite colony). Thus, although inclusions may provide potent fracture initiation sites, their presence or absence does not necessarily change σF in fully pearlitic microstructures. formerly Graduate Student, Carnegie Mellon University  相似文献   

18.
In order to develop a comprehensive understanding of the effect of hot charging temperature on the hot ductility of a Nb‐containing steel, direct hot charging process was simulated by using a Gleeble thermo stress/strain machine. Three kinds of thermal histories were introduced to assess the hot ductility of the steel during continuously cast, hot charging, and cold charging process by means of hot tensile test in relation to surface cracking of hot charging processed steel slabs. The ductility of the specimens charged at the temperature within the range of ferrite/austenite two‐phase region and charged at the temperature just below the Ar1 of the steel is largely reduced. These results can be ascribed to the retained ferrite films at the boundaries of austenite encouraging voiding at the boundaries and these voids gradually link up to give failure around 750°C, and the combination of inhogeneous austenite grain size and precipitations aggravating the ductility trough by encouraging grain boundary sliding at 950°C. The steel via the conventional cold charge process experienced a complete phase transformation from austenite to ferrite and pearlite structure during the cooling to the ambient temperature. This steel can be charged into a reheating furnace and rolled without experiencing hot embrittlement due to the recrystallization and the precipitates are trapped inside a newly formed grain of austenite. In comparison with the hot ductility results, the hot tensile strength is only slight influenced by the charging temperature.  相似文献   

19.
The development of a model to predict the isothermal austenite grain growth during soaking of a low carbon Si‐Mn TRIP steel is described. After reviewing the existing models for isothermal grain growth, a general model dn=d0n + K1t exp(K2/T) was selected and a procedure was delineated to calculate the values of the different constants of the equation starting with the real three‐dimensional austenite grain size. This paper also deals with an improved etching technique to reveal the austenite grain boundaries.  相似文献   

20.
Laboratory thermomechanical processing (TMP) experiments have been carried out to study the austenite transformation characteristics, precipitation behavior, and recrystallization of deformed ferrite for an interstitial-free (IF) steel in the temperature range just below Ar 3. For cooling rates in the range 0.1 °C s−1 to 130 °C s−1, austenite transforms to either polygonal ferrite (PF) or massive ferrite (MF). The transformation temperatures vary systematically with cooling rate and austenite condition. There is indirect evidence that the transformation rates for both PF and MF are decreased by the presence of substitutional solute atoms and precipitate particles. When unstable austenite is deformed at 850 °C, it transforms to an extremely fine strain-induced MF. Under conditions of high supersaturation of Ti, Nb, and S, (Ti,Nb) x S y precipitates form at 850 °C as coprecipitates on pre-existing (Ti,Nb)N particles and as discrete precipitates within PF grains. Pre-existing intragranular (Ti,Nb) x S y precipitates retard recrystallization and grain coarsening of PF deformed at 850 °C and result in a stable, recovered subgrain structure. The results are relevant to the design of TMP schedules for warm rolling of IF steels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号