首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A three-noded curved beam element with transverse shear deformation, based on independent isoparametric quadratic interpolations, is designed from field-consistency principles. It is shown that a quadratic element that is field-inconsistent in membrane strain suffers from ‘membrane locking’—i.e. an error of the second kind propagates indefinitely as the element length to thickness ratio and/or the element length to radius of curvature ratio increase, in nearly inextensional bending. However, field-inconsistency in shear strain does not lead to ‘shear locking’ but degrades its performance to exactly that of a field-consistent linear element. It is also seen that field-inconsistency leads to severe axial force and shear force oscillations. Error estimates for locking are derived, wherever possible, and confirmed by numerical experiments. The field-consistent element offered here is the most efficient quadratic curved beam element possible.  相似文献   

2.
In this paper, an attempt is made to understand the errors arising in curved finite elements which undergo both flexural and membrane deformations. It is shown that with elements of finite size (i.e. a practical level of discretization at which reasonably accurate results can be expected), there can be errors of a special nature that arise because the membrane strain fields are not consistently interpolated with terms from the two independent field functions that characterize such a problem. These lead to errors, described here as of the ‘second kind’ and a physical phenomenon called ‘membrane locking’. The findings here emerge from recent research on the effect of reduced integration on shallow curved beam elements and on the use of coupled displacement fields in finite rings. The failures which have occurred in earlier attempts to use independent polynomial displacement fields for curved elements may not have been due to neglect of rigid body motions or failure to achieve constant strain states, but because of locking due to spurious constraints. These emerge in the penalty limits of extreme thinness (an inextensional regime), when exact integration of the energy functional of an element based on low order independent interpolations for the in-plane and normal displacements is used. It seems possible to determine optimal integration rules that will allow the extensional deformation of a curved beam/deep arch/finite ring element to be modelled by independently chosen low order polynomial functions and which will recover the inextensional case in the penalty limit of extreme thinness without spurious locking constraints. The much maligned ‘cubic in w–lincar in u’ curved beam element is now reworked to show its excellent behaviour in all situations. What is emphasized is that the choice of shape functions, or subsequent operations to determine the discretized functionals, must consistently model the physical requirements the problem imposes on the field variables. In this manner, we can restore an old element to respectability and thereby indicate clearly the underlying principles. These are: the importance of ‘field consistency’ so that arch and shell problems can be modelled consistently by independent polynomial displacement fields, and the role that reduced integration or some equivalent construction can play to achieve this.  相似文献   

3.
The fact that finite element models can give rise to violent stress oscillations and that there are optimal locations where stresses can be correctly sampled in spite of the presence of these violent stress fluctuations has been known for some time. However, it is less well known that these oscillations arise in a specific class of problems—where there are multiple strainfields arising from one or more field-variables and where one or more of these strain-fields must be constrained in particular physical limits. In this paper, we show that unless the interpolations for these constrained strain-fields are ‘field-consistent’, violent oscillations would set in. These oscillations represent spurious self-equilibrating stress-fields generating spurious energy terms that lead to ‘locking’. The field-consistency interpretation offers a conceptual scheme to delineate these problems and an operational procedure called the functional reconstitution technique allows the errors resulting from field-inconsistency to be anticipated a priori. We demonstrate the power of this approach through an interesting example of a multi-strain-field problem—the inextensional/nearly inextensional deformation of a shear flexible curved beam.  相似文献   

4.
The reason for looking in some depth at locking of Mindlin shell elements is introduced. A simple example of straight beam locking is examined in detail. The observations about reduced integration that emerge are subsequently unified with some other facts the writer has come across. A simple curved beam element is then formulated and examined under inextensional bending. The performance of this element under reduced integration is predicted for both the ‘undistorted’ and ‘distorted’ configurations (see text) and for a selective-very reduced integration scheme. The previous predictions are then verified through the performance of an 8 node Mindlin shell element in a suitable cylindrical shell test. The paper finally concludes with a set of important observations that so easily could be drawn from such a simple analysis.  相似文献   

5.
In this paper, an efficient curved cubic B‐spline beam element is developed based on the field consistency principle, for vibration analysis. The formulation is general in the sense that it includes anisotropy, transverse shear deformation, in‐plane and rotary inertia effects. The element is based on laminated refined beam theory, which satisfies the interface transverse shear stress and displacement continuity, and has a vanishing shear stress on the top and bottom surfaces of the beam. The lack of consistency in the shear and membrane strain field interpolations in their constrained physical limits causes poor convergence and unacceptable results due to locking. Hence, numerical experimentation is conducted to check these deficiencies with a series of assumed shear/membrane strain functions, redistributed in a field‐consistent manner. The performance of the element is assessed by studying the free vibration behaviour of a variety of problems ranging from a straight beam to a circular ring. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
The non‐conventional exact geometry shell elements based on the Timoshenko–Mindlin kinematics with five displacement degrees of freedom are proposed. The term ‘exact geometry (EXG)’ reflects the fact that coefficients of the first and second fundamental forms of the reference surface and Christoffel symbols are taken exactly at every Gauss integration point. The choice of only displacements as fundamental shell unknowns gives an opportunity to derive strain–displacement relationships, which are invariant under rigid‐body shell motions in a convected curvilinear coordinate system. This paper presents a newly developed family consisting of three hybrid and one displacement‐based four‐node EXG shell elements. To avoid shear and membrane locking and have no spurious zero energy modes, the ANS concept is employed. The ANS interpolations satisfy exactly the plate compatibility equation for in‐plane strains. As a result, all EXG shell elements developed pass membrane and bending plate patch tests and exhibit a superior performance in the case of distorted coarse mesh configurations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Shallowly curved beam elements, including shear deformation and rotary inertia effects, are derived from Hamilton's variational principle. Different degree polynomials, labelled ‘anisoparametric’, are used to interpolate the kinematic variables, instead of uniform interpolations as in the conventional isoparametric procedure. This approach yields a correct representation of the bending strain and, importantly, the membrane and transverse shear strains. Consequently, the severe shortcomings of the exactly integrated isoparametric elements, characterized by excessively stiff solutions in the thin regime (a phenomenon often referred to as membrane and shear locking), are overcome. Uniform (isoparametric-like) nodal patterns are achieved by explicitly enforcing higher-degree penalty modes in the membrane and shear strains. This procedure preserves the compatibility of the kinematic field and the capability of the element to move rigidly without straining. Exact quadratures are used on all element matrices, producing a correct rank stiffness matrix, a consistent load vector and a consistent mass matrix. The elements suffer no limitations over the entire theoretical range of the slenderness ratio. For further enhancement and, particularly, in coarse-mesh situations, an effective relaxation of penalty constraints at the local element level is introduced. This technique ensures a well-conditioned stiffness matrix. Although the element penalty constraints are relaxed, the corresponding global structure constraints are enforced as is required by the analytic theory. Particular attention is given to the simplest element—a two-node, six degree-of-freedom beam in which all strains are constant. Solutions to static and free vibration arch and ring problems are presented, demonstrating the exceptional modelling capabilities of this element.  相似文献   

8.
A clearer insight into the ‘shear locking’ phenomenon, which appears in the development of C0 continuous element using shear-flexible or penalty type formulations, is obtained by a careful study of the Timoshenko beam element. When a penalty type argument is used to degenerate thick elements to thin elements, the various approximations of the shear related energy terms act as different types of constraints and, depending on the formulation, two types of constraints which are classified as true or spurious may emerge. The spurious constraints, where they exist, are responsible for the ‘shear locking’ phenomenon, and its manifestation and elimination is demonstrated in a very simple example. The source of difficulty is shown to be the mathematical operations involved in the various shape function definitions and subsequent integration of functionals. It is seen that formulations that ensure only true constraints in the extreme penalty limit cases display far superior performance in the thick element situation as well, and thus guidelines for the development of efficient elements are drawn. A similar type of behaviour is observed in a shallow curved beam element and here ‘inplane locking’ can be eliminated by selective integration to obtain an improved curved beam element. However, ‘inplane locking’ does not cause a spurious constraint as the error quickly vanishes with the reduction of element size for a reasonable radius of curvature conforming with shallow shell theory.  相似文献   

9.
Several simple and accurate C° two-node arch/beam and four-node cylindrical shell/plate finite elements are presented in this paper. The formulation used here is based on the refined theory of thick cylindrical shells and the quasi-conforming element technique. Unlike most C° elements, the element stiffness matrix presented here is given explicitly. In spite of their simplicity, these C° finite elements posseses linear bending strains and are free from the deficiencies existing in curved C° elements such as shear and membrane locking, spurious kinematic modes and numerical ill-conditioning. These finite elements are valid not only for thick/thin beams and plates, but also for arches/straight beams and cylindrical shells/plates. Furthermore, these C° elements can automatically reduce to the corresponding C1 beam and plate elements and give the C° beam element obtained by the reduced integration as a special case. Several numerical examples indicate that the simple two-node arch/beam and four-node cylindrical shell/plate elements given in this paper are superior to the existing C° elements with the same element degrees of freedom. Only the formulation of the rectangular cylindrical shell and plate element is presented in this paper. The formulation of an arbitrarily quadrilateral plate element will be presented in a follow-up paper32.  相似文献   

10.
Exactly integrated isoparametric plane stress elements behave poorly in flexure. The 4-noded element ‘locks’, with errors that progress indefinitely as element aspect ratio increases. Reduced integration of the shear strain energy eliminates this locking entirely. The 8-noded element does not lock, but improves in performance with reduced integration of shear strain energy. Both elements, with their original shape functions, show severe shear stress oscillations in flexure. In this paper we attribute these oscillations to the lack of ‘consistency’ of shear strain fields derived directly from independent field-variable interpolations. We derive error models for specific tractable examples which can confirm the accuracy of this conceptual scheme through digital computation using the finite element models. A field-consistent redistribution strategy for the shear strain field is offered as an elegant procedure to free the elements of spurious oscillations and give a ‘lock’-free performance.  相似文献   

11.
The formulation of a curved beam element with 3 nodes for curvature to eliminate the shear/membrane locking phenomenon is presented. The element is based on curvature so that it may represent the bending energy fully, and the shear/membrane strain energy is incorporated into the formulation by the equilibrium equations. To deal with general boundary conditions, a transformation matrix between nodal curvature and nodal displacement vector is introduced. Several examples are presented in order to verify the element formulation and its analytical capability. The solutions obtained reveal that the element describes the curved beam behaviour quite correctly and efficiently, showing no locking phenomena, and that it is also applicable to the analysis of both thin and thick curved beams.  相似文献   

12.
A simple two-node axisymmetric shell element with shallowly curved meridian assumptions and the inclusion of shear deformation and rotary inertia is presented. The principal developments include: (a) consistent resolution of the membrane and shear related excessive stiffening (locking) via anisoparametric interpolations of the displacement variables; (b) further upgrading of strain energy by means of a shear relaxation (correction) parameter. The resulting element possesses an improved condition of the stiffness matrix, increased efficiency in explicit time integration and enhanced accuracy in coarse discretizations. Comprehensive vibration examples are carried out to assess the element performance. The numerical results demonstrate a wide applicability range with respect to element slenderness and curvature properties.  相似文献   

13.
An efficient two‐node curved axisymmetric shell element is proposed. The element with three degrees of freedom per node accounts for the transverse shear flexibility and rotary inertia. The strain components are defined in a curvilinear co‐ordinate frame. The variation of normal displacement (w) along the meridian is represented by a cubic polynomial. The relevant constitutive relations and the differential equations of equilibrium in the meridional plane of the shell are used to derive the polynomial field for the tangential displacement (u) and section rotation (θ). This results in interdependent polynomials for the field variables w, u and θ, whose coefficients are coupled by generalized degrees of freedom and geometric and material properties of the element. These coupled polynomials lead to consistently vanishing coefficients for the membrane and transverse shear strain fields even in the limit of extreme thinness, without producing any spurious constraints. Thus the element is devoid of membrane and shear locking in thin limit of inextensible and shearless bending, respectively. Full Gaussian integration rules are employed for evaluating stiffness marix, consistent load vector and consistent mass matrix. Numerical results are presented for axisymmetric deep/shallow shells having curved/straight meridional geometries for static and free vibration analyses. The accuracy and convergence characteristics of this C0 element are superior to other elements of the same class. The performance of the element demonstrates its applicability over a wide range of axisymmetric shell configurations. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
A new two‐noded shear flexible curved beam element which is impervious to membrane and shear locking is proposed herein. The element with three degrees of freedom at each node is based on curvilinear deep shell theory. Starting with a cubic polynomial representation for radial displacement (w), the displacement field for tangential displacement (u) and section rotation (θ) are determined by employing force‐moment and moment‐shear equilibrium equations. This results in polynomial displacement field whose coefficients are coupled by generalized degrees of freedom and material and geometric properties of the element. The procedure facilitates quartic polynomial representation for both u and θ for curved element configurations, which reduces to linear and quadratic polynomials for u and θ, respectively, for straight element configuration. These coupled polynomial coefficients do not give rise to any spurious constraints even in the extreme thin regimes, in which case, the present element exhibits excellent convergence to the classical thin beam solutions. This simple C0 element is validated for beam having straight/curved geometries over a wide range of slenderness ratios. The results indicates that performance of the element is much superior to other elements of the same class. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
Most studies on the three-noded quadratic Timoshenko beam element have been based on a 2-point Gaussian integration rule for the shear energy or on the use of a smoothed substitute shape function or assumed shear strain field to improve its performance. However, if the mid-node of the element is slightly displaced from the mid-point position, the consistency requirements for the constrained shear strain field are more complex. This paper investigates this problem and the findings throw more light on consistency procedures demanded for distorted quadrilateral plate and shell elements. The optimal element which emerges from this study has bending and shear strain fields which have a linear variation over the element under non-uniform mapping.  相似文献   

16.
In the present study first‐order shear deformable shell finite elements based on general curvilinear co‐ordinates are proposed. For the development of the present shell elements, a partial mixed variational functional with independently assumed strains is provided in order to avoid the severe locking troubles known as transverse shear and membrane lockings. Bubble functions are included in the shape function of displacement to improve the performance of the developed element. The proposed assumed strain four‐ and nine‐node elements based on the general tensor shell theory provide an efficient linkage framework for shell surface modelling and finite element analysis. In the several benchmark problems, the present shell elements with exact geometric representations demonstrate their performance compared to previously reported results. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
A formulation for 36‐DOF assumed strain triangular solid shell element is developed for efficient analysis of plates and shells undergoing finite rotations. Higher order deformation modes described by the bubble function displacements are added to the assumed displacement field. The assumed strain field is carefully selected to alleviate locking effect. The resulting element shows little effect of membrane locking as well as shear locking, hence, it allows modelling of curved shell structures with curved elements. The kinematics of the present formulation is purely vectorial with only three translational degrees of freedom per node. Accordingly, the present element is free of small angle assumptions, and thus it allows large load increments in the geometrically non‐linear analysis. Various numerical examples demonstrate the validity and effectiveness of the present formulation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents eight‐node solid‐shell elements for geometric non‐linear analysis of elastic shells. To subdue shear, trapezoidal and thickness locking, the assumed natural strain method and an ad hoc modified generalized laminate stiffness matrix are employed. A selectively reduced integrated element is formulated with its membrane and bending shear strain components taken to be constant and equal to the ones evaluated at the element centroid. With the generalized stresses arising from the modified generalized laminate stiffness matrix assumed to be independent from the ones obtained from the displacement, an extended Hellinger–Reissner functional can be derived. By choosing the assumed generalized stresses similar to the assumed stresses of a previous solid element, a hybrid‐stress solid‐shell element is formulated. Commonly employed geometric non‐linear homogeneous and laminated shell problems are attempted and our results are close to those of other state‐of‐the‐art elements. Moreover, the hybrid‐stress element converges more readily than the selectively reduced integrated element in all benchmark problems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper flat shell elements are formed by the assemblage of discrete Mindlin plate elements RDKTM and either the constant strain membrane element CST or the Allmans membrane element with drilling degrees of freedom LST. The element RDKTM is a robust Mindlin plate element, which can perform uniformly thick and thin plate bending analysis. It also passes the patch test for thin plate bending, and its convergence for very thin plates can be ensured theoretically. The singularity of the stiffness matrix and membrane locking are studied for the present elements. Numerical examples are presented to show that the present models indeed possess properties of simple formulations, high accuracy for thin and thick shells, and it is free from shear locking for thin plate/shell analysis.  相似文献   

20.
The solid‐shell element presented in this paper has nine nodes: eight are classically located at the apexes and are fitted with three translational DOFs whereas the ninth is sited at the center and is endowed with only one DOF; a displacement along the ‘thickness’ direction. Indeed, to be used for modeling thin structures under bending effects, this kind of finite element has a favored direction where several integration points are distributed. Besides, there is solely one ‘in‐plane’ quadrature point to avoid locking phenomena and prohibitive CPU costs for large nonlinear computations. Because a reduced integration is not enough to completely prevent transverse shear locking, a shear–strain field is assumed. Compared with the other eight‐node ‘solid‐shell' bricks, the presence of a supplementary node has a main aim: getting a linear normal strain component which, along with a full three‐dimensional constitutive strain–stress behavior, allows to achieve similar results in bending cases as those obtained with the usual plane stress state hypothesis. For that, the ninth node DOF plays the role of an extra parameter essential for a quadratic interpolation of the displacement in the thickness direction. The advantage is that this DOF has a physical meaning and, for instance, a strength equivalent to a normal pressure can be prescribed. With a suitable nodal numbering, the band width is not significantly increased and meshes can easily be generated because the extra nodes are always located at element centers. To emphasize the peculiar features of such an element, a set of examples (linear and nonlinear) is carried out. Numerous comparisons with other elements show pretty good results in bending dominating problems while adding the event of a normal stress component in sheet metal forming simulations with double side contact. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号