首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Field studies were conducted for three years (1987–1989) at two locations to evaluate 4 commercial triple superphosphate (TSP) fertilizers containing various levels of water-soluble P. The fertilizers had been produced from phosphate rock deposits located in Florida, North Carolina and Morocco. AOAC available P was 81 to 94% water-soluble. Water-soluble P was inversely related to the level of Fe and Al in the fertilizers. Phosphorus from each source was applied to a Malbis soil (Plinthic Paleudults) and a Hartsells soil (Typic Hapludults) at rates of 0, 25, 49 and 99 kg ha–1. Potato (Solanum tuberosum L.) yields were increased by the application of P, except for the Malbis soil in 1988. Yields were not affected by the source of added P on either soil during the three years of the study. Fertilizer performance was not affected by the level of water-soluble P or the content of Fe and Al when band applied to potatoes under field conditions in the Southeastern United States.  相似文献   

2.
Single superphosphate was incubated for six months at 25°C in soil which had been subject to one of three moisture treatments. These were: dried in a glasshouse, dried at a constant temperature of 25°C, or moist soil. Phosphorus (P) effectiveness was then compared with effectiveness of P from freshly-applied superphosphate using yields of wheat (Triticum aestivum) and triticale (×Triticosecale) tops in pot experiments.Incubation in soil which had been dried at 25°C did not decrease the effectiveness of the P. Incubation in moist soil decreased it to about 20% of the effectiveness of freshly-applied P in one case and to about 50% in the other case. Incubation in soil which had been dried in a glasshouse also decreased its effectiveness. The decrease varied with conditions, but in two cases the P was 70% as effective as freshly-applied P, and in one case only 45% as effective. Presumably sufficient moisture was present in the soil dried in the glasshouse to enable water-soluble P present in the fertilizer to react with the soil.  相似文献   

3.
The agronomic effectiveness of three P fertilizers (diamonium phosphate, rock phosphate and compost) was studied in a greenhouse experiment using wheat. A radioisotopic method, using triple superphosphate labelled with32P, was used to evaluate the P in dried tops that was derived from i) the soil, ii) labelled superphosphate and iii) the fertilizer being studied.The ratio between P uptake from each fertilizer and P uptake from the soil was used to compare the effectiveness of the different fertilizers. P derived from diammonium phosphate was greater than P derived from the soil, except in one soil. P derived from rock phosphate was always lower than P derived from the soil. The effectiveness of compost depended on soil type. Compost can produce two kind of effects: i) a direct P contribution and ii) an indirect effect improving P uptake from the soil. The radioisotopic method can be used to study the effectiveness of fertilizers even when there are no differences in yield.  相似文献   

4.
The effect of water supply on the response of wheat (Triticum aestivum) and triticale (×Triticosecale) to levels of freshly-applied rock phosphate and superphosphate, and the residues of these fertilizers applied 9 years previously in the field, was studied in three glasshouse experiments. The < 2 mm fraction of the top 10 cm of soil was used (1.8 kg soil per pot), and in one experiment, freshly-applied fertilizer was also added to the more acidic subsoil (10 to 20 cm). There were two water treatments: the soil was returned to field capacity by watering to weight, either daily (W1, adequate water) or weekly (W2, water stress). Yield of dried tops was used to calculate fertilizer effectiveness. The phosphorus (P) concentration in dried tops was used to determine critical P, which is the P concentration related to 90% of the maximum yield. Just before sowing, soil samples were collected to measure bicarbonate-extractable (soil test) P which was related to plant yield.Water stress reduced yields and maximum yield plateaus by 20 to 40%. Water stress reduced the effectiveness of all P fertilizers by between 20 to 60%, largely because of a reduction in the maximum yield potentials. In the field, water supply is seasonally dependent and it can affect the yield response of plants to freshly-applied rock phosphate and superphosphate and the residues of these fertilizers applied to the field in previous years. Relative to placing fertilizer in the topsoil, placing fertilizer in the subsoil improved effectiveness by about 26% for rock phosphate and 12% for superphosphate.The relationship between yield and P concentration in dried tops, and critical P, differed for W1 and W2. The soil test P calibration, which relates yield to soil test P, and the soil test P required to produce the same yield also differed for W1 and W2. Consequently critical P and soil test P calibrations depend on water supply, which in the field varies within and between growing seasons. This is so for freshly- and previously-applied rock phosphate and superphosphate.  相似文献   

5.
In a field experiment in a Mediterranean climate (474 mm annual rainfall, 325 mm (69%) falling in the May to October growing season) on a deep sandy soil near Kojaneerup, south-western Australia, the residual value of superphosphate was measured relative to freshly-applied superphosphate. The grain yield of five successive crops (1988–1992) was used to measure the residual value: barley (Hordeum vulgare), barley, oat (Avena sativa), lupin (Lupinus angustifolius), and barley. There was no significant yield response to superphosphate applied to the first crop (barley, cv. Moondyne). There were no results for the second crop (barley) due to weeds or the fourth crop (lupin) due to severe wind erosion which damaged the crop. The residual value of superphosphate was measured using grain yields of the third crop (oat, cv. Mortlock) for superphosphate applied one and two years previously, and the fifth crop (barley, cv. Onslow) for superphosphate applied one, two, three and four years previously. In February 1992, before sowing the fifth crop, soil samples were collected to measure bicarbonate-extractable phosphorus (P) (soil test P) which was related to the subsequent grain yields of that crop. This relationship is the soil test P calibration used to estimate the current P status of soils when providing P fertilizer recommendations.The residual value of superphosphate declined markedly. For the third crop (oat), it was 6% as effective as freshly-applied superphosphate one year after application, and 2% as effective two years after application. For the fifth crop (barley), relative to freshly-applied superphosphate, the residual value of superphosphate in successive years after application was 46%, 6%, 3% and 2% as effective. The soil has a very low capacity to sorb P, and P was found to leach down the soil profile. The largest yield for P applied one and two years previously in 1990, and two, three and four years previously in 1992, was 35 to 50% lower than the maximum yield for freshly-applied P.Soil test P was very variable (coefficient of variation was 32%) and mostly less than 8µg P/g soil. The calibration relating yield (y axis) to soil test P (x axis) differed for soil treated with superphosphate one year previously compared with soil treated two, three and four years previously. The top 10 cm of soil was used for soil P testing, the standard depth. P was leached below this depth but some of the P leached below 10 cm may still have been taken up by plant roots. Consequently soil test P underestimated the P available to plants in the soil profile. The soil test P calibration therefore provided a very crude estimate of the current P status of the soil.  相似文献   

6.
Wheat was grown continuously in soil amended with 5 levels of superphosphate and with 4 levels of urea at 3 sites. The incidence and severity of take-all, caused byGaeumannomyces graminis var.tritici, declined with increasing rates of application of both superphosphate and urea.In both years, the severity of take-all on plants receiving neither superphosphate nor urea was about 40% while at the highest level of superphosphate and urea supply the take-all severity was approximately halved at 22%.There was an increase in grain yield in response to applied superphosphate and urea to the highest level of each nutrient. There was also an increase in the 1,000-kernal weights with superphosphate and urea fertilizer application.  相似文献   

7.
The effect of water supply on the response of subterranean clover (Trifolium subterraneum), annual medic (Medicago polymorpha) and wheat (Triticum aestivum) to levels of phosphorus (P) applied to the soil (soil P) was studied in four glasshouse experiments. P was applied as powdered superphosphate. In one experiment, the effect on plant yield of P concentration in the sown seed (seed P) was also studied. There were two water treatments: the soil was returned to field capacity, by watering to weight, either daily (adequate water, W1) or weekly (water stress, W2). In three experiments: (i) P concentration or content (P concentration × yield) in plant tissue was related to plant yield, and (ii) soil samples were collected before sowing to measure bicarbonate-extractable P (soil test P) which was related to subsequent plant yields.Compared with W1, water stress consistently reduced yields of dried tops and the maximum yield plateau for the relationship between yield and the level of P applied, by up to 25 to 60% in both cases. Compared with W1, the effectiveness of superphosphate for producing dried tops decreased for W2 by 11 to 45%, for both freshly-applied and incubated superphosphate. Consequently in the field, water supply, which varies with seasonal conditions, may effect plant yield responses to freshly — and previously — applied P fertilizer.Seed P increased yields, for W1, by 40% for low soil P and 20% for high soil P; corresponding values for W2 were 20 and 12%. Consequently proportional increases due to seed P were smaller for the water-stressed treatment.The relationship between yield and P concentration or content (internal efficiency of P use) differed for W1 and W2, so that the same P concentration or content in tissue was related to different yields. Estimating the P status of plants from tissue P values evidently depends on water supply, which in the field, differs in different years depending on seasonal conditions.The relationship between yield and soil test P differed for W1 and W2. Predicting yields from soil test P can only provide a guide, because plant yields depend on both P and water supply, which in the field may vary depending on seasonal conditions.  相似文献   

8.
The relationships between (i) soil test phosphorus (P) (Colwell sodium bicarbonate procedure) and the level of P applied (from 0 to 1000 kg total P ha–1) (relationship 1), and (ii) yield and soil-test P (relationship 2, the soil P test calibration), were measured in two field experiments on very sandy, P-leaching soils in the high rainfall (> 800 mm annual average) areas of south-western Australia. The soils were humic sandy podzols, or haplohumods, comprising 97% sand (20 to 2000 m). The experiments started in April 1984 and were terminated at the end of 1990. Soil-test P, measured on soil samples collected to 5, 10 and 25 cm depth each January in the years after P application, was related to yields of dried clover (Trifolium subterraneum) herbage measured later in each year. The four P fertilizers studied were single superphosphate, coastal superphosphate (made by adding, just before granulation, extra rock phosphate together with elemental sulphur while manufacturing single superphosphate), apatite rock phosphate, and Calciphos.Relationship (1) was adequately described by a linear equation (R2 > 0.80, most being > 0.90). The slope coefficient estimates the extractability of P from the soil by the Colwell procedure, and is called extractability. Relationship (2) was adequately described by the Mitscherlich equation (R2 > 0.75, most being > 0.90). For relationship (2), use of percentage of the maximum (relative) yield eliminated differences due to different maximum yields and yield responses (maximum yield minus the yield for the nil-P treatment). Soil test P ranged from about 4 to 150 g Pg–1 soil. Soil test P and extractability were generally higher for samples of the top 5 cm of the soil than the top 25 cm, and were largest for single superphosphate and lowest for apatite rock phosphate. Both extractability (relationship (1)) and the curvature coefficient of the Mitscherlich equation (relationship (2)), differed for different P fertilizers and different soil sample depths. The curvature coefficient also differed for different yield assessments (harvests) in the same or different years. Different soil P test calibrations were required for different P fertilizers, soil sample depths and harvest in the same or different years. It is concluded that soil P testing provides a crude estimate of the current P status of P-leaching soils in Western Australia.  相似文献   

9.
Coastal superphosphate, a partially acidulated rock phosphate (PARP), is being considered as an alternative fertilizer to single superphosphate for pastures in high rainfall (> 800 mm annual average) areas of south-western Australia. The effectiveness of single and coastal superphosphate, as P fertilizers, was measured in two field experiments using dry herbage yield of subterranean clover (Trifolium subterraneum). The experiments were started in April 1990 and were terminated at the end of 1993. In the years after P applications, soil samples were collected each January to measure Colwell soil-test P, which was related to plant yields measured later on that year, to provide soil P test calibrations.Relative to freshly-applied single superphosphate, the effectiveness of freshly-applied coastal superphosphate and the residues of previously-applied single and coastal superphosphate were less effective in some years (from 3% as effective to equally effective), and up to 100% more effective in other years. This large range in effectiveness values in different years is attributed to different climatic conditions. Soil P test calibrations were different for soils treated with single or coastal superphosphate. The calibrations were also different for different yield assessments (harvests) in the same year, and in different years. Consequently soil P testing can only provide a very crude estimate of the current P status of the soils.  相似文献   

10.
Recovery of phosphorus from monoammonium phosphate (MAP), diammonium phosphate (DAP) and triple superphosphate (TSP), at rates of 0, 15, 30, or 45 mg P kg–1 was determined in a pot experiment on a Calcaric Lithosol soil (21% CaCO3). At the 15 mg P kg–1 rate DAP was as effective as MAP and more effective than TSP in supplying P, but it was less effective than MAP and TSP at the higher rates of 30 and 45 mg P kg–1. At the two higher P rates residual bicarbonate extractable P was also significantly lower with DAP. Yield dry matter was not affected by the source of P.  相似文献   

11.
In Brazil, where the rock phosphates are high in impurities, no attempthas been made to evaluate the P supplying efficiency of the neutral ammoniumcitrate fraction (NAC) of P fertilizers, or to verify if the NAC +H2O extraction solution (AOAC) is satisfactory for estimatingthe P availability. To attain these objectives, a greenhouse experiment wascarried out with samples of a Typic Hapludox soil. Four acidulatedphosphates obtained from Brazilian raw materials were studied; monocalciumphosphate p.a.[Ca(H2PO4)2·H2O]was included as a standard source of P, as well as leached samplescontaining no water-soluble P. The fertilizers were thoroughly mixed withthe whole soil in the pots or with only 1% of its volume, at the rateof 50 mg kg-1 of P, soluble in NAC + H2O. Cornplants (Zea mays, L.) were grown for 35 days and the amounts of dry matterand P accumulated in plant tops were determined. Increasing the amount ofcationic impurities in the raw materials decreased the concentration ofwater-soluble P, NAC + H2O-soluble P and water-soluble P/NAC+H2O soluble P ratio of the fertilizers obtained. The P in theNAC fraction was not as much available to plants as in the NAC +H2O fraction or in pure MCP. The great variation found in drymatter (5.4 to 17.1 g pot-1) and in P uptake (6.3 to 22.2 mgpot-1) indicates that the AOAC method is not an adequate indexfor evaluating the P availability of fertilizers with high amounts ofcationic impurities.  相似文献   

12.
The Pi, Colwell, Bray 1, calcium acetate lactate (CAL) and Truog phosphorus (P) soil test reagents were assessed in two field experiments on lateritic soils in Western Australia that had been fertilized four years previously (1984) with triple superphosphate, North Carolina rock phosphate, Queensland rock phosphate, and in one experiment, Calciphos. Soil samples to measure soil P test were collected February 1987. Soil P test was related to seed (grain) yields measured later in 1987. Different crop species were grown on different sections of the same plot at each site. The species were lupins (Lupinus angustifolius), barley (Hordeum vulgare) and oats (Avena sativa) at one site, and lupins, oats, triticale (×Triticosecale) and rapeseed (Brassica napus) at the other site. For each reagent, the soil P test calibration, which is the relationship between yield, expressed as a percentage of the maximum yield, and soil P test, generally differed for different plant species and for different fertilizer types. Variations in soil P test required to produce half the maximum yield of each species at each site was least for the CAL reagent followed by the Colwell reagent.  相似文献   

13.
The effect of annual banding of superphosphate (0–45 kg P ha−1) on soil phosphorus (P) content, growth, and yield of wheat was investigated from 1982 to 1998 in a major rainfed wheat production area of South Africa. Conventional tillage practices in a wheat monoculture cropping system were followed under summer rainfall conditions. The responses of wheat growth to fertilizer P application were evident during early and late tillering growth stages, with decreased responses towards maturity. Although average yields varied between cropping seasons (0.881 to 3.261 t ha−1) due to climatic conditions, significant exponential response patterns between yield and fertilizer P applications existed. Optimum yields were achieved with P applications of 10 to 15 kg P ha−1. The recovery of fertilizer P in the grain decreased with increasing P applications. Results of soil P analyses and calculated P balance indicated a more rapid increase in soil P content with application of fertilizer P at levels above 20 kg P ha−1, with gradual increases occurring at lower levels. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
胡正荣 《磷肥与复肥》2009,24(1):46-48,55
通过延长重钙料浆反应时间的实验研究,找出获得较高磷矿分解率和产品水溶磷的较佳反应停留时间为9h;并通过装置改造和生产验证,取得了良好的运行效果和较好的经济效益,年生产能力提高10%,年利润增加660万元。  相似文献   

15.
The residual value of superphosphate was measured in three glasshouse pot experiments using three different lateritic soils (pH CaCl2: 4.8–5.3) from south-western Australia. The residual value was estimated relative to levels of freshly-applied superphosphate using yield of dried tops and bicarbonatesoluble P extracted from the soil (soil test values). Up to five successive crops were grown. In each experiment, four different pasture legume species fertilized with mineral nitrogen were grown in rotation with a cereal species. The legume species includedMedicago polymorpha, M. murex, Trifolium subterraneum, Ornithopus compressus, O. perpusillus andO. pinnatus. The cereal species includedTriticum aestivum, ×Triticosecale, andHordeum vulgare. The comparative phosphorus (P) requirement of the different pasture legumes was estimated from the amount of P required to produce 50 or 90% of the maximum yield measured for each species at each harvest. Soil samples for the soil test were collected just before sowing each crop, and were related to the plant yields of that crop.Relative to freshly-applied superphosphate, the residual value of superphosphate measured using plant yield was similar for all pasture legume species, and decreased markedly, by about 50 to 80% between the first and second crop, and by a further 5 to 30% for subsequent crops. The decrease in residual value estimated using soil test values was less marked. For freshly-applied superphosphate, and for the same plant species, the relationship between yield and the level of P applied differed for different crops.There was no consistent, systematic trend for the comparative P requirement of the different legume species within and between crops of the three experiments and soils.For all crops, the relationship between yield of dried tops and P concentration in dried tissue generally differed for the different legume species, indicating the different species usually have different internal efficiency of P use curves. However, for each experiment, when the same cereal species was grown in all the pots, the relationship between yield and P concentration in tissue was similar for previously- and freshly-applied superphosphate, regardless of the pasture legume species grown in previous crops.The relationship between yield and soil test values usually differed, within each crop, for different plant species and for previously- and freshly-applied superphosphate. For the same plant species, the relationship also differed between different crops.  相似文献   

16.
Seven soil tests for phosphate (P) (Bray 1, Bray 2, Truog, ammonium oxalate, Colwell, iron oxide-strip (Pi) and resin-strip soil tests) were evaluated for predicting the yield of plant species which have very different external P requirements. Two acid, sandy soils that had been fertilized six years previously with superphosphate and three rock phosphates were used. A glasshouse pot experiment with lettuce, wheat and maize was used to calibrate the soil tests.For some soil P tests, different calibrations relating yield to soil P test values were required for each plant species, P fertilizer and soil combination. The Bray 2 and Truog soil P tests were the worst predictors of yield for both soils and all plant species. The Pi and ammonium oxalate tests were the most predictive tests for one soil when data for all fertilizers were considered. The Bray 1 and Colwell soil P tests were the most predictive for the other soil. The resin-strip P test was poorly predictive of yield of lettuce and wheat for both the soils. The accuracy in prediction of yield on the basis of P test value decreased in the sequence maize > wheat > lettuce. This rank is opposite to the increasing external P requirements of these species.  相似文献   

17.
A pot experiment with two lateritic soils measured the relative residual effectiveness (RRE) of superphosphate and three rock phosphate (RP) fertilizers applied six years previously in the field. Three plant species (lettuce, wheat and maize) having very different external P requirements were grown as indicators of P availability. Superphosphate had the maximum RRE (1.0) and low reactive Queensland RP had the minimum RRE (0.04–0.45) for all plant species. For one soil the RRE of reactive North Carolina RP was similar to that of superphosphate (0.87–1.04), but ranged from 0.07 to 0.30 for the other soil. The RRE of Calciphos (one soil only) ranged from 0.60 to 0.98 for all plant species.The RRE of rock phosphate decreased for the three crops in sequence maize> wheat> lettuce for a 30 days growth period. This ranking follows the increasing external P requirement of the three plant species. Very high rates of application of RP may have induced micronutrient deficiencies.  相似文献   

18.
Five pot experiments were conducted with wheat and rice in a net house to study the effect of lime nitrogen (LN, contains about 55% calcium cyanamide) amendment rates on the efficiency of urea, the recovery urea-15N, the efficiency of the three nitrogen fertilizers(NF), on the efficiency of urea in the three soils, and on NO 3 - -N leaching from a flooded soil. A rate of LN-N of 5–8% of applied fertilizer N increased the recovery of labeled urea-N by 9.42%. The effect of LN on the efficiency of NF was urea > ammonium sulfate > ammonium chloride. Under flooded conditions, LN decreased NO 3 - formation and leaching.Responses of several crops to LN amended fertilizers were also studied in field experiments. At equal NPK applications, the efficiency of basal applications to rice, wheat, corn, potatoes, soybean, peanut, grapes, peaches, melon and watermelon were bette r with LN than without. Efficiency with a basal fertilizer for rice or wheat with LN were the same as with the same fertilizer without LN applied in split applications.  相似文献   

19.
The effectiveness of coastal superphosphate, a partially acidulated rock phosphate (PARP) made from apatite, and Ecophos, a PARP made from calcium iron aluminium (crandallite millisite) rock phosphate, was compared in pot experiments with the effectiveness of ordinary superphosphate (OSP) and North Carolina reactive apatite rock phosphate (NCRP). There were three experiments using different lateritic soils collected in Western Australia. Fertilizer effectiveness was measured using yield of dried wheat (Triticum aestivum) tops grown for 28 days. Three successive crops were grown. The phosphorous (P) fertilizers were applied and mixed with the soils before sowing the first crop. In addition, OSP was added to extra pots before sowing crops 2 and 3 in order to measure the effectiveness of the original P fertilizers relative to freshly-applied OSP for these crops.As measured using plant yield, coastal superphosphate was the most effective P fertilizer for three crops on an acidic peaty sand (pH water 5.0). Relative to freshly-applied OSP, it was 154% as effective for crop 1, 75% as effective for crop 2, and 36% as effective for crop 3. Corresponding values for Ecophos were 44, 29 and 19%, and for NCRP, 77, 67 and 29%, with the original OSP treatment being 61 and 56% as effective for crops 2 and 3. For three crops on a lateritic gravel loam (pH 6.5), both coastal superphosphate and OSP were the most effective fertilizers, and were equally effective for crop 1, and relative to freshly-applied OSP, were about 31% as effective for crop 2, and 16 and 21 % as effective for crop 3. Corresponding values for Ecophos were 47,15 and 11%, and NCRP, 33,15 and 5%. For two crops in a loamy sand (pH 5.4), OSP was the most effective fertilizer, and, relative to fresh OSP, it was 36% as effective for crop 2. Relative to fresh OSP, the effectiveness for crops 1 and 2 of coastal superphosphate was 57 and 18%, for Ecophos 71 and 27%, and for NCRP 50 and 36%.  相似文献   

20.
The relationship between dry matter (DM) herbage yield and the level of superphosphate applied to the soil (soil P) was measured for swards of annual pasture legumes in four glasshouse and two field experiments. A single cultivar of one species was used in each experiment. The swards were either uncut, or cut at weekly intervals to a height of 1.5 to 3 cm from the soil surface from about one month after sowing. The sown seeds of each species were of the same size but contained different P concentrations (seed P).For the glasshouse experiments, defoliation reduced DM herbage yields of the species (Trifolium subterraneum, T. balansae, Medicago polymorpha andOrnithopus compressus) by between 20 to 50% two months after sowing, and by 50 to 75% three months after sowing. Higher seed P increased DM herbage yields two months after sowing by about 25% for the lowest soil P level and by 15% for the highest soil P level. Three months after sowing the values were 12 and 8%.In one field experiment, compared with uncut swards, the DM herbage yields for the weekly cut swards ofT. subterraneum were reduced by up to about 5% for the lowest soil P, compared with up to 25% for the highest soil P. Corresponding reductions forM. polymorpha swards in the other field experiment were about 15 and 20%. For the weekly cut swards, high seed P produced large increases in the cumulative DM yields of the weekly cut herbage. Increases for low soil P were about 300% at 2.5 months after sowing and 30% at 4.5 months after sowing. Corresponding values for high soil P were 100 and 20%. However, higher seed P produced only small (zero to 15%) increases in total DM yield of uncut and weekly cut swards (for the weekly cut swards, total DM yield was the cumulative yields of the weekly cut herbage plus the DM yield of the plant residues that were below the cutting height of the mower). Compared with uncut swards, seed production, measured forM. polymorpha only, was reduced by 40% when the swards were regularly cut. Higher seed P increased seed production of uncut swards by 40% for the lowest soil P level and by 25% for the highest soil P level. Corresponding values for the weekly cut swards were 30 and 20%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号