首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of ethoxylated sodium monoalkyl sulfosuccinate (ESMASS) ester surfactants were prepared by reacting polyethylene glycol (molecular weight 600) with sodium monoalkyl sulfosuccinate (SMASS). The esters were prepared by reacting octyl, lauryl, or cetyl alcohol with sodium sulfosuccinate (SSS) to prepare E(14)SMOSS, E(14)SMLSS, and E(14)SMCSS. The chemical structures of the prepared surfactants were confirmed by Fourier transform infrared (FTIR) and 1H-NMR spectroscopy. The surface tension of the synthesized surfactants was measured at 25 °C individually or mixing at different molar fractions with sodium dioctyl sulfosuccinate. The surface active properties were calculated and the micellization process of the mixture was investigated. The molar ratio of anionic (SDOSS) and anionic–nonionic surfactant moieties [E(14)SMOSS, E(14)SMLSS, and E(14)SMCSS] in the mixed aggregates were deduced using the regular solution approximation equations. Depending on the critical micelle concentration values measured for each surfactant individually, and as well as the mixed systems, the minimum surface tension was exhibited at a ratio of 0.6 SDOSS:0.4 E(14)SMCSS. The micellar composition of the mixed aggregates were explained and discussed based on the effect of their chemical structures. The activity coefficient (f 1, f 2), interaction parameter (β), and ideality of anionic–nonionic mixed aggregates were evaluated.
E. M. S. AzzamEmail:
  相似文献   

2.
Four anionic gemini surfactants of the sulfate type C12CnC12, where n is the spacer chain length (n = 3, 4, 6, and 10) were synthesized. The structures of these surfactants were confirmed by FT‐IR, 1H NMR, ESI mass spectra (ESI‐MS), and elemental analysis. The surface‐active properties of these compounds were investigated by means of surface tension, electrical conductivity, and fluorescence measurements. Premicellar aggregations were found for the four gemini surfactants, as revealed by the conductivity measurement. The formation of premicellar aggregates may account for the discrepancy between the critical micelle concentration (cmc) obtained by the surface tension and conductivity measurement. The cmc values of these gemini surfactants were much lower than that of sodium dodecylsulfate (SDS) and decreased monotonously with the increase of spacer chain length from 3 to 10. The effect of spacer chain length on the performance properties like foaming, emulsion stability, and lime soap dispersing ability were also studied and discussed. Practical applications : Alkyl sulfate surfactants are one of the most widely used surfactants. The new alkyl sulfate gemini surfactants synthesized in our study are more surface‐active than sodium dodecylsulfate. These gemini surfactants possess low critical micelle concentrations, high emulsion stability, and excellent lime soap dispersing ability. They have potential applications in the fields of cosmetics, detergents, etc.  相似文献   

3.
Surface tension, fluorescence, and dynamic light scattering were used to investigate the properties of a binary surfactant system comprising an anionic gemini surfactant (DLMC) and cationic gemini surfactant (II‐12‐EO2). Surface tension measurements afforded the critical micelle concentration (cmc) of the mixture and the values are all lower than those of pure constituent surfactants. For the mixtures of II‐12‐EO2/DLMC, the micelle aggregation number decreases with the increase of II‐12‐EO2, and the micropolarity of the micelle is lowest when the molar fraction of II‐12‐EO2 is 0.5; the hydrodynamic radius (Rh) of the mixed micelle first increases and then decreases with the addition of II‐12‐EO2, and larger micelles are obtained when the molar fraction of II‐12‐EO2 is 0.5 or 0.7.  相似文献   

4.
The interaction of cationic gemini and cationic conventional surfactants by conductivity was systematically overviewed, paying attention to synergism observed in micellization. These mixed systems were found to show remarkable synergism in micelle formation. The experimental critical micelle concentration values being lower than the value predicted by ideal solution theory indicate that the mixed micellization is due to attractive interaction between the two components. Gemini/conventional systems form mixed micelle due to attractive interactions (negative β values). The values of micellar mole fraction of constituent 1 (X 1) in surfactant mixtures are more than in the ideal state (X 1 ideal ), which means that, the mixed micelles are rich in conventional surfactants in comparison to that in the ideal state.  相似文献   

5.
Synergism in mixed micelle formation and surface tension reduction efficiency and the ternary phase behavior of anionic surfactant (alcohol polyoxyethylene ether acetate containing 10 ethylene oxide group and a fatty chain of C16–18) with cationic surfactants (dodecyldimethylbenzyl ammonium chloride and lauryltrimethyl ammonium chloride) were investigated. Surface tension of the systems at different molar ratios was studied in detail and the interaction parameters of each system were calculated. The results show that both systems have lower values of critical micelle concentration (CMC) and γcmc than individual surfactants especially at equal ratio between cationic and anionic surfactants. Both systems present synergism in mixed micelle formation and surface tension reduction efficiency. The ternary phase behavior of the two systems was investigated using a polarized microscope. The micellar phase and lamellar phase were observed in both systems and the coexisting phase was only observed in the dodecyldimethylbenzyl ammonium chloride system.  相似文献   

6.
Theoretical investigations on the micellization of mixtures of (i) amino acid-based anionic surfactants [AAS: N-dodecyl derivatives of aminomalonate, −aspartate, and -glutamate] and (ii) hexadecyltrimethylammonium bromide (HTAB), were carried out at different mole ratios. Variation in the theoretical values of critical micelle concentration (CMC), mole fraction of surfactants in the micellar phase (X), at the interface (Xσ), interaction parameters at the bulk/interface (βRσ), ideality/nonideality of the mixing processes, and activity coefficients (f) were evaluated using Rubingh, Rosen, Motomora, and Sarmoria-Puvvada-Blankschtein models. CMC values significantly deviate from the theroretically calculated values, indicating associative interaction. With increasing mole fraction of AAS (αAAS), the magnitude of the (βRσ) values gradually decreased, considered to attributable to hydrophobic interactions. With increasing αAAS, the micellar mole fraction of HTAB (X2) decreased insignificantly and X2 values were higher than those compared to AAS for all combinations, due to the dominance of HTAB in micelles. Micellar mole fraction at the ideal state of AAS () differed from micellar mole fraction of AAS (X1), indicating nonideality in the mixed micellization process. Gibbs free energy of micellization ( ∆Gm ) values are more negative than the free energy of micellization for ideal mixing (), indicating the micellization process is spontaneous. With increasing αAAS, the enthalpy of micellization (ΔHm) and entropy of micellization (ΔSm) values gradually increased, which indicates micellization is exothermic. The different physicochemical parameters of the mixed micelles are correlated with the variation in the spacer length between the two carboxylate groups of AAS.  相似文献   

7.
Construction of gemini‐like surfactants using the cationic single‐chain surfactant cetyltrimethylammonium bromide C16H33N(CH3)3Br2 (CTAB) and the anionic dicarboxylic acid sodium salt NaOOC(CH2)n‐2COONa (CnNa2, n = 4, 6, 8, 10, 12) by way of non‐covalent interactions has been investigated by surface tension measurements, hydrogen‐1 nuclear magnetic resonance (1H NMR) spectroscopy and isothermal titration microcalorimetry (ITC). The critical micelle concentrations (cmc) of the CTAB/CnNa2 mixtures are obviously lower than that of CTAB and strongly depend on the mixing ratio. Moreover, the cmc values of the CTAB/CnNa2 mixtures decrease gradually with an increasing methylene chain length of CnNa2, indicating hydrophobic interaction between the hydrocarbon chains of CTAB and CnNa2 facilitates micellization of the mixtures. In particular, the ITC curves and 1H NMR spectra indicate that the binding ratio of CTAB to CnNa2, except C4Na2, is around 2:1, i.e., (CTAB)2CnNa2. Additionally, CTAB/CnNa2 mixtures are soluble in a whole molar ratio and concentration ranges have been studied, even at the electrical neutralization point. Therefore, these results reveal that highly soluble gemini‐like surfactants are conveniently constructed with oppositely‐charged cationic single‐chain surfactants and dicarboxylic acid sodiums. In an attempt at improving the performance of surfactants this work provides guidance for choosing additives that form gemini‐like surfactants via an uncomplicated synthesis.  相似文献   

8.
A series of anionic gemini surfactants with the same structure except the spacer nature have been studied. Their solution properties were characterized by the equilibrium surface tension and intrinsic fluorescence quenching method. The critical micelle concentrations (CMC), surface tension at cmc, C20, and the micelle aggregation number (N) were obtained. The surface tension measurements indicate that these gemini surfactants have much lower cmc values and great efficiency in lowering the surface tension of water compared with those of conventional monomeric surfactants. Furthermore, the standard free energy of micellization for anionic gemini surfactants was also determined. The results showed that the nature of the spacer has an important effect on the aggregation properties of gemini surfactants in aqueous solutions. The surfactant with a hydrophilic, flexible spacer was more readily able to form micelle compared with the surfactant with a hydrophobic, rigid spacer, which leads to a lower CMC value, larger N, more negative free energy of micellization, and a more closely packed micelle structure.  相似文献   

9.
Mixed micellization of cationic gemini surfactant butanediyl-1,4-bis(dimethyldodecylammonium bromide) with nonionic surfactants (sorbitan esters, alcohols and phenol ethoxylates) and triblock copolymers has been studied tensiometrically. Various physicochemical parameters of the studied systems including ideal CMC values, experimental and ideal micellar compositions, interaction parameters, activity coefficients of the components, etc. have been evaluated by considering theoretical models of Clint, Rubingh, Rosen and Maeda. The experimental critical micelle concentration (CMC) values of the mixed micelles were lower than the CMC values of the individual components and showed a negative deviation from ideal CMC (CMC*) values. The analysis reveals that the mole fractions of gemini are lower compared to the nonionic surfactants/triblock polymers and the values of ΔG m ° , ΔG ad ° , G min and ΔG ex m show that the spontaneity of the studied mixed micelles relatively decreases as the content of the gemini in the bulk phase increases.  相似文献   

10.
The alterations caused by betaine-type zwitterionic and anionic surfactant mixed systems in the permeability of unilamellar liposomes have been investigated. The partition coefficient of these systems, at different molar fractions, between the aqueous phase and the lipid bilayer of liposomes has been determined. These surfactant mixed systems were formed byN-dodecyl-N,N-dimethylbetaine (C12-Bet) and sodium dodecyl sulfate (SDS) in the presence of 20 mM PIPES buffer and 110 mM Na2SO4, at pH 7.21. Unilamellar liposomes were prepared from egg phosphatidylcholine and phosphatidic acid (9:1 molar ratio). The release of the fluorescent agent 5-(6)-carboxyfluorescein induced by the systems has been studied at sub-solubilizing concentrations. When the molar fraction of C12-Bet/SDS is about 0.4, the critical micelle concentration values of these systems exhibit a minimum, whereas their partition coefficient between the aqueous phase and lipid bilayer of lipid bilayers shows a maximum. There is a consistent correlation between the partition coefficient and the ability of the different systems of surfactants to modify the permeability of liposomes.  相似文献   

11.
Micellization of four cationic quaternary ammonium gemini surfactants, having a diethyl ether or hexyl spacer with the alkyl chain lengths of 12 and 16 carbon atoms, was studied using isothermal titration microcalorimetry (ITC) and electrical conductivity measurements in the temperature range from 298.15 to 313.15 K. In this temperature range, where surfactants are normally applied, the temperature almost does not influence the critical micelle concentration (CMC) and the degree of micelle ionization (α) values of the gemini surfactants, and the replacement of a hexyl spacer by a diethyl ether spacer leads to a slight decrease in the CMC and α values. However, as the alkyl chain length increases from 12 to 16 carbon atoms, the CMC values significantly decrease from 0.99–1.19 mM to 0.020–0.057 mM. In particular, the enthalpy of micellization (ΔHmic ) and the associated thermodynamic parameters show obvious changes with varying temperature and molecular structure. ΔHmic becomes much more exothermic at higher temperature or for the surfactants with a more hydrophilic spacer. Moreover, the heat capacity change of micellization (ΔC P, mic ) is less exothermic for the surfactants with a more hydrophilic spacer or a longer alkyl chain. The enthalpy–entropy compensation data show that the surfactants with longer alkyl chains have a more stable micellar structure.  相似文献   

12.
Surfactant mixtures are used in many different industrial formulations. In this study, the mixed micelle formation behavior of 2 different cationic surfactants, namely dodecyltrimethylammonium bromide (DTAB) and benzyldimethylhexadecylammonium chloride (BDHAC), in the absence and presence of urea at various temperatures (298.15–318.15 K) was studied using the conductometric method. The attractive interaction between DTAB and BDHAC was estimated from the values of critical micelle concentration (CMC) and the CMC for ideal mixing (CMCid). Urea increases the CMC value as a result of the enrichment in the surface charge of the micelles/mixed micelles. The values of micellar mole fraction (X1Rub [Rubingh], X1M [Motomura], X1Rod [Rodenas]) and ideal micellar (X1id) of surfactant BDHAC were obtained by different models and are shown to exhibit the high contribution or effective involvement of BDHAC in mixed micelles and increase with increasing BDHAC mole fraction (α1). Activity coefficients (f1 and f2) were also evaluated from the relevant formula given in the literature. The negative values of the interaction parameters (β) show the attractive interaction among the studied components. Excess Gibbs free energy (?Gex) of micellization revealed that the stability of mixed micelles is higher in aqueous solution than in urea solution. The thermodynamic parameters, namely the Gibbs free energy change, enthalpy change, and entropy change (?Gom, ΔHom, and ?Som, respectively), were also calculated from the conventional standard equations.  相似文献   

13.
The viscosity of aqueous micellar solutions depends on the size and shape of the aggregates and thus can be adjusted by addition of another surfactant interacting with the original component, which alters the geometry of the molecule-pair consisting of two surfactants and influences strongly the size and shape of the mixed micelles. Ethanediyl-α,ω-bis(dimethyl dodecyl ammonium bromide), referred to as C12-2-C12·2Br, forms generally large micelles. Addition of a cationic surfactant (dodecyltrimethylammonium bromide, C12TMABr) or a nonionic surfactant (alkyl polyoxyethylene ether, C m E n ), the mixed micelle size is reduced violently since the electrostatic repulsion between the same charged heads of C12-2-C12·2Br and C12TMABr or the steric hindrance of the PEO chain of C m E n in the palisade layers of the mixed micelle, which leads to a decrease in the packing parameter P of the molecule-pair. As a result, the zero-shear viscosity (η 0) of the mixed solution reduces rapidly. In contrast, on adding an oppositely charged surfactant, η 0 of the mixed solution increases strongly since the P of the molecule-pair increases through electrostatic attraction between the oppositely charged heads. The typical cases occur in the mixtures of the anionic gemini surfactant, O,O′-bis(sodium 2-lauricate)-p-benzenediol C11pPHCNa, and the cationic surfactant C12-2-C12·2Br, C12TMABr or its homologue with a different size of heads.  相似文献   

14.
Surface tension for the binary mixtures of a biosurfactant sodium deoxycholate (NaDC) with three different conventional surfactants (p-(1,1,3,3-tetramethylbutyl)phenol polyoxyethylene, polyoxethylene-10-oleyl ether, and sodium oleate) were measured in buffer solutions at different temperatures. Surface properties were determined as well as the micellar characteristics like composition, micellar molecular interaction parameter (??), activity coefficients (f 1, f 2), and the free energy of micellization were analyzed using some theoretical models, including Clint, Rubingh, Motomura and Maeda models. The results reveal that all the three investigated systems show non-ideality in the micelle formation by the deviation in the experimental critical micelle concentration (CMC), f 1, f 2, and negative ?? values from the ideal values. The proportion of NaDC in the mixed micelle (X 1) calculated by all models increases with increasing the molar fraction of NaDC in solution (?? NaDC), but the X 1 values are very small even at the high ?? NaDC. Moreover, by using the Maeda theory, the results suggest the chain-chain interaction among surfactants does not seem to be strong. It is noted that two break points were observed in the surface tension plots of pure NaOL and NaDC/NaOL mixture solutions. Interestingly, by introducing moderate NaDC or decreasing the temperature, the first break point disappeared for the two systems.  相似文献   

15.
The interaction between a novel anionic gemini surfactant containing a triazine ring, denoted as C8‐G, and cetyltrimethylammonium bromide (CTAB) has been investigated in aqueous solution. The surface tension vs log. molar concentration plots of the individual surfactants and their mixtures were measured at different temperatures (298, 303, 308, and 313 K) by the drop volume method. The surface properties and the interaction parameters of the adsorption monolayer and the mixed micelle were obtained from the plot. The results showed that the CMC of the C8‐G/CTAB mixture reached a minimum value of 3.20 × 10?5 mol/L when αG (the mole fraction of C8‐G in the mixed system) was 0.7 at 308 K, and the minimum γCMC was 28.1 mN/m obtained for the molar ratio of 0.9 at 308 K. Interaction between the two components was strongest () when αG was 0.7 at 303 K. All the C8‐G/CTAB mixtures exhibited synergism in both surface tension reduction efficiency and mixed micelle formation except when the mole fraction of C8‐G (αG) was 0.1, 0.5 and 0.9 at 313 K, and became greatest for the molar ratio of 0.7 at 303 K. The C8‐G/CTAB mixtures exhibited synergism in surface tension reduction effectiveness for all the complex ratios at 303 K, αG = 0.1, 0.3, 0.9 at 308 K and αG = 0.7 at 313 K, whereas the other surfactant mixtures did not show this synergism.  相似文献   

16.
Two new classes of gemini cationic surfactants—hexanediyl-1,6-bis[(isopropylol) alkylammonium] dibromide {in the abbreviation form: CnC6Cn[iPr-OH] and CnC6Cn[iPr-OH]2; alkyl: CnH2n + 1 with n = 9, 10, 12 and 14}—have been synthesized by interaction of alkyl bromides with N,N′-di-(isopropylol)-1,6-diaminohexane and N,N,N′,N′-tetra-(isopropylol)-1,6-diaminohexane. The surface tension, electrical conductivity, and dynamic light scattering (DLS) techniques were used to investigate the aggregation properties of the gemini cationic surfactants in aqueous solution. The formation of critical aggregates at two concentrations in an aqueous solution from obtained gemini cationic surfactants were determined via the tensiometric method. Thus, these gemini cationic surfactants start to form aggregates at concentrations well below their critical micelle concentrations (CMC). The surface properties and the binding degree (β) of the opposite ion were tested against the length of the surfactant hydrocarbon chain and the number of the isopropylol groups in the head group. By applying the DLS technique, it was explored that how the number of isopropylol groups in gemini cationic surfactants with C12H25 chain affects the sizes of micelles at concentrations greater than CMC. It was discovered that the obtained gemini cationic surfactants have a biocidal character.  相似文献   

17.
Surface tensions were determined for a mixture of an anionic fluorinated surfactant and a PEO-PPO-PEO triblock copolymer. The interactions between the two surfactant molecules in the mixed monolayer and the mixed micelle were studied through molecular interaction parameters (β σ, β M) and the molecule exchange energy (ε, ε m). It was noted that synergism and strong attractive interactions took place between the anionic fluorinated surfactant and the triblock copolymer molecules in both mixed micelles and mixed monolayers, reflected by the interaction parameter values of between −10 and −18 for all mixtures investigated. Moreover, it can be seen from the value of (ε − ε m) that when the mixture has a small amount of triblock copolymer, the formation of mixed micelle results in a greater decrease in energy than does the formation of a mixed monolayer. With an increase in the mole fraction of the triblock copolymer in the mixture, in order to obtain the lowest surface energy, surfactants tend to form mixed monolayers first, and then form mixed micelles.  相似文献   

18.
A series of dialkyl diphosphate gemini surfactants has been synthesized using C18 as hydrophobic chains and phosphate as head groups. Three flexible spacers have been used. In the present study, an attempt has also been made to synthesize mono octadecyl phosphate (MOP) at 35°C, which was used as an intermediate in the synthesis of geminis. This long chain of MOP has been effectively converted to gemini surfactants and subsequently converted to their disodium salts. The effect of reaction variables like temperature, duration, molar ratios of reactants, catalyst and spacer on the yield of dialkyl diphosphate gemini surfactant has also been reported. The MOP, gemini surfactants and disodium salt of gemini surfactants were characterized using FT‐IR and 1H‐NMR. Surface active and physico‐chemical properties of synthesized gemini surfactants and their monomer were also determined. The results revealed that the yield of dialkyl diphosphate gemini surfactants ranged from 80 to 90%. Among all synthesized dialkyl diphosphate gemini surfactants D, S‐1,6‐GSOD had maximum anionic content, i.e. 80.7%, showed highest foaming ability and superior dispersing ability, whereas D, S‐1,8‐GSOD showed low cmc values, i.e. 0.00012 mM/L; minimum surface tension and interfacial tension, i.e. 39.1 and 36.3 mN/m, respectively.  相似文献   

19.
N-Alkyl glucamines can be reacted with α,ω-diepoxides to yield gemini (dimeric) surfactants similarly to the reaction of glucamine with terminal epoxides. Under the conditions chosen for this work, epoxides were quantitatively converted in the presence of an equimolar amount of amine to gemini surfactants. Reactions could be carried out under mild conditions (70°C) in methanol, and products were obtained quantitatively by removing the solvent. The combination of N-octyl glucamine, N-decyl glucamine, or N-dodecyl glucamine with diepoxides of α,ω-diolefins having chain lengths of C8, C9, C10, or C14 resulted in gemini surfactants differing in spacer length and length of hydrophobic alkyl chains. Surface-active properties were studied by measuring surface tension and evaluating foaming properties. Tensiometric studies showed the reduction of surface tension down to 29–33 mN/m and critical micelle concentrations often in the range of 3–150 mg/L. Comparison of a selected gemini surfactant [1,8-bis(N-dodecyl glucamino-2,7-octane diol] with its corresponding “single surfactant” demonstrated the enhancement of surface-active properties afforded by the gemini structure.  相似文献   

20.
A series of novel cationic gemini surfactants, C n H 2n+1 N+(CH3)2CH2CHOHCHOHCH2N+(CH3)2C n H 2n+1 ·2Br, have been synthesized, and their surface properties were investigated in water, 0.1 N NaCl, and 0.1 N NaBr at 25°C. From surface tension-log molar concentration plots, the pC20, critical micelle concentration (CMC), and γCMC values have been determined, and the area/molecule at the aqueous solution/air interface was calculated. When the number of carbon atoms in the alkyl (hydrophobic) chains is above a certain number, which depends upon the molecular environment, the surface activity of the compounds is less than expected. This appears to be due to formation of small, soluble aggregates below the CMC. Equilibrium constants calculated for this aggregation indicate that a series of oligomers are formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号