首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Echinomycin is a peptide antibiotic which binds strongly to double-helical DNA up to a limit of approximately one molecule per five base-pairs. There is no detectable interaction with rRNA and only extremely feeble non-specific interaction with poly(rA)-poly(rU). Heat denaturation of DNA greatly decreases the binding, and similarly limited interaction is observed with naturally occurring single-stranded DNA. Association constants for binding to nine double-helical DNA species from different sources are presented; they vary by a factor of approximately 10, but are not simply related to the gross base composition. The interaction with DNA is ionic-strength-dependent, the binding constant falling by a factor of 4 when the ionic strength is raised from 0.01 to 0.10mol/litre. From the effect of temperature on the association constant for calf thymus DNA, the enthalpy of interaction is calculated to be about -13kJ/mol (-3kcal/mol). Binding of echinomycin persists in CsCl gradients and the buoyant density of nicked bacteriophage PM2 DNA is decreased by 25 mg/ml. Echinomycin interacts strongly with certain synthetic poly-deoxynucleotides, the binding constant decreasing in the order poly(dG)-poly(dC) greater than poly(dG-dC) greater than poly(dA-dT). For the latter two polymers the number of base-pairs occluded per bound antibiotic molecule is calculated to be three, whereas for poly(dG)-poly(dC) it is estimated to be four to five. Poly(dA)-poly(dT) and poly(dI)-poly(dC) interact only very weakly with the antibiotic. Poly(dI-dC) interacts to a slightly greater extent, but the binding curve is quite unlike that seen with the three strongly binding synthetic polynucleotides. Echinomycin affects the supercoiling of closed circular duplex bacteriophage PM2 DNA in the characteristic fashion of intercalating drugs. At low ionic strength the unwinding angle is almost twice that of ethidium. Likewise the extension of the helix, determined from changes in the viscosity of rod-like sonicated DNA fragments, is nearly double that expected for a simple (monofunctional) intercalation process. On this basis the interaction process is characterized as bifunctional intercalation. At higher ionic strength the unwinding angle relative to that of ethidium and the helix extension per bound echinomycin molecule fall, indicating a smooth progression towards more nearly monofunctional intercalation. Two simpler compounds which act as analogues of the quinoxaline chromophores of echinomycin, quinoxaline-2-carboxamide and the trypanocidal drug Bayer 7602, interact with DNA very much more weakly than does echinomycin, showing that the peptide portion of the antibiotic plays an essential role in determining the strength and specificity of the interaction.  相似文献   

2.
We have investigated the binding ability to DNA of compounds belonging to the 2-azaanthraquinone-type structure and have examined the effect on the activity of DNA gyrase as well as on mammalian topoisomerases in vitro. Using different biophysical techniques it was found that one of these ligands, 9-((2-dimethylamino)ethyl)amino)-6-hydroxy-7-methoxy-5, 10-dihydroxybenzo[g]isoquinoline-5,10-dione (TPL-I), is an intercalating DNA binding agent, whereas the parent compound tolypocladin (TPL) and a derivative (TPL-II) showed almost no similar affinity to DNA. CD measurements demonstrated a significant and selective binding tendency of TPL-I to alternating purine/pyrimidine sequences with some preference for poly(dA-dT). poly(dA-dT). Tm values were increased of the ligand complex with the alternating AT-containing duplex polymer. The binding to various DNAs was characterized by CD and visible absorption spectral changes. From the latter, different binding constants of 6.2 x 10(5) and 1.5 x 10(5) M-1 were obtained for poly(dA-dT).poly(dA-dT) and poly(dA). poly(dT), respectively. Sedimentation measurements with supercoiled pBR322 plasmid DNA clearly indicated an intercalative binding mechanism associated with an unwinding angle of about 18 degrees. These results suggest that the intercalative binding of TPL-I is promoted by the 2-(dimethylamino)ethylamino group substituted on carbon 9 of the anthraquinone system. The cytotoxic compound TPL-I, but not TPL or TPL-II, effectively inhibited the DNA supercoiling reaction of DNA gyrase and the activity of mammalian topoisomerases I and II as measured by the relaxation assay. TPL-I affects the cleavage reaction of topoisomerases on a single site located in alternating purine-pyrimidine sequence regions. The inhibitory potency of TPL-I can be ascribed to a blocking of cleavage sites on the DNA substrate, which correlates with the sequence preference of the ligand.  相似文献   

3.
We have employed a broad range of spectroscopic, calorimetric, DNA cleavage, and DNA winding/unwinding measurements to characterize the DNA binding and topoisomerase I (TOP1) poisoning properties of three terbenzimidazole analogues, 5-phenylterbenzimidazole (5PTB), terbenzimidazole (TB), and 5-(naphthyl[2,3-d]imidazo-2-yl)bibenzimidazole (5NIBB), which differ with respect to the substitutions at their C5 and/or C6 positions. Our results reveal the following significant features. (i) The overall extent to which the three terbenzimidazole analogues poison human TOP1 follows the hierarchy 5PTB > TB > 5NIBB. (ii) The impact of the three terbenzimidazole analogues on the superhelical state of plasmid DNA depends on the [total ligand] to [base pair] ratio (rbp), having no effect on DNA superhelicity at rbp ratios < or = 0.1, while weakly unwinding DNA at rbp ratios > 0.1. This weak DNA unwinding activity exhibited by the three terbenzimidazoles does not appear to be correlated with the abilities of these compounds to poison TOP1. (iii) Upon complexation with both poly(dA).poly(dT) and salmon testes DNA, the three terbenzimidazole analogues exhibit flow linear dichroism properties characteristic of a minor groove-directed mode of binding to these host DNA duplexes. (iv) The apparent minor groove binding affinities of the three terbenzimidazole analogues for the d(GA4T4C)2 duplex follow a qualitatively similar hierarchy to that noted above for ligand-induced poisoning of human TOP1-namely, 5PTB > TB > 5NIBB. In the aggregate, our results suggest that DNA minor groove binding, but not DNA unwinding, is important in the poisoning of TOP1 by terbenzimidazoles.  相似文献   

4.
5.
Triiodothyronine (T3) binding to Ficoll-Isopaque purified human lymphocytes was studied. During incubation of lymphocytes with [125I]T3 in a calcium-free medium at 37 degrees C, maximal uptake of T3 in nuclei occurrred after 2 h and declined after prolonged incubationd incubation . Incubation of lymphocytes with T3 concentrations ranging from 1 X 10(-11) TO 1 X 10(-9) mol/l and subsequent treatment with Triton X-100 to strip off [125I]T3 bound with low affinity was used for the estimation of affinity and capacity of nuclear T3 binding sites. The mean equilibrium affinity constant (Ka) estimated with the Scatchard method in 11 euthyroid healthy subjects was 4.5 X 10(9) l/mol, and the mean maximal binding capacity 25 X 10(-5) mol/100 mug DNA. In a female patient with peripheral resistance to thyroid hormone action, the estimated Ka was 3.5 X 10(9) l/mol and the number of T3 binding sites 37 X 10(-15) mol/100 mug DNA. Although not statistically different from the mean value in euthyroid subjects, this Ka value was outside the range of control values observed and was considered presumptive evidence that the nuclear T3 receptors in this patient have abnormally low affinity for its ligand. The nuclear T3 binding capacity in this patient was significantly increased.  相似文献   

6.
The nucleic acid-binding domain of Escherichia coli DNA topoisomerase III (Topo III) has been identified using a selection procedure designed to isolate inactive Topo III polypeptides. Deletion of this binding domain, contained in the carboxyl terminus of Topo III, results in a drastic reduction in the ability of the enzyme to bind to single-stranded DNA and RNA substrates. Successive truncation of the enzyme within this region results in the gradual loss of nucleic acid binding activity and in a gradual change in the mechanism of Topo III-catalyzed relaxation of negatively supercoiled DNA. The reduction of nucleic acid binding activity of the truncated polypeptides does not result in a loss of cleavage site specificity for the enzyme, suggesting that other amino acids are involved in the positioning of the nucleic acid within the nicking/closing site of the topoisomerase.  相似文献   

7.
The specific recognition by Escherichia coli RNA polymerase of single-stranded oligodeoxyribonucleotides (oligos) with the sequence of the -10 promoter region on the nontemplate strand has been studied. Binding was monitored by observing the increase in fluorescence of 2-aminopurine residues incorporated in the oligos. The effects of salt on the rates of formation and dissociation of RNA polymerase.oligo complexes are relatively small, from which we conclude that electrostatic interactions contribute minimally to the favorable binding free energy. From the convex temperature dependence of ln Ka (Ka is the equilibrium association constant), we infer that a large apparent negative heat capacity, of 1-2 kcal M-1 K-1, accompanies complex formation, which is interpreted as due to a conformational change in RNA polymerase. Contrary to expectation, the forward rate constant for binding of oligos is more than 10-fold smaller than that for open complex formation at strong promoters. This suggests that in comparison to an oligo, promoter DNA may be better able to accelerate this required conformational change in the RNA polymerase. Oligo binding was shown to compete with the interaction between RNA polymerase and promoters, indicating that the two bind to overlapping sites on the RNA polymerase  相似文献   

8.
Spectroscopic, calorimetric, DNA cleavage, electrophoretic, and computer modeling techniques have been employed to characterize the DNA binding and topoisomerase poisoning properties of three protoberberine analogs, 8-desmethylcoralyne (DMC), 5,6-dihydro-8-desmethylcoralyne (DHDMC), and palmatine, which differ in the chemical structures of their B- and/or D-rings. DNA topoisomerase-mediated cleavage assays revealed that these compounds were unable to poison mammalian type II topoisomerase. By contrast, the three protoberberine analogs poisoned human topoisomerase I according to the following hierarchy: DHDMC > DMC > palmatine. DNA binding by all three protoberberine analogs induced negative flow linear dichroism signals as well as unwinding of the host duplex. These two observations are consistent with an intercalative mode of protoberberine binding to duplex DNA. However, a comparison of the DNA binding properties for DMC and DHDMC, which differ only by the state of saturation at the 5,6 positions of the B-ring, revealed that the protoberberine analogs do not "behave" like classic DNA intercalators. Specifically, saturation of the 5-6 double bond in the B-ring of DMC, thereby converting it to the DHDMC molecule, was associated with enhanced DNA unwinding as well as a reversal of DNA binding preference from a DNA duplex with an inaccessible or occluded minor groove {poly[d(G-C)]2} to DNA duplexes with accessible or unobstructed minor grooves {poly[d(A-T)]2 and poly[d(I-C)]2}. In addition, a comparison of the DNA binding properties for DHDMC and palmatine revealed that transferring the 11-methoxy moiety on the D-ring of DHDMC to the 9 position, thereby converting it to palmatine, was associated with a reduction in binding affinity for both duplexes with unobstructed minor grooves as well as for duplexes with occluded minor grooves. These DNA binding properties are consistent with a "mixed-mode" DNA binding model for protoberberines in which a portion of the ligand molecule intercalates into the double helix, while the nonintercalated portion of the ligand molecule protrudes into the minor groove of the host duplex, where it is thereby available for interactions with atoms lining the floor and/or walls of the minor groove. Furthermore, saturation at the 5,6 positions of the B-ring, which causes the A-ring to be tilted relative to the plane formed by rings C and D, appears to stabilize the interaction between the host duplex and the minor groove-directed portion of the protoberberine ligand. Computer modeling studies on the DHDMC-poly[d(A-T)]2 complex suggest that this interaction may involve van der Waals contacts between the ligand A-ring and backbone sugar atoms lining the minor groove of the host duplex. The hierarchy of topoisomerase I poisoning noted above suggests that this minor groove-directed interaction may play an important role in topoisomerase I poisoning by protoberberine analogs. In the aggregate, our results presented here, coupled with the recent demonstration of topoisomerase I poisoning by minor groove-binding terbenzimidazoles [Sun, Q., Gatto, B., Yu, C., Liu, A. , Liu, L. F., & LaVoie, E. J. (1995) J. Med. Chem. 38, 3638-3644], suggest that minor groove-directed ligand-DNA interactions may be of general importance in the poisoning of topoisomerase I.  相似文献   

9.
A site-directed mutation in motif IV of Escherichia coli DNA helicase II (UvrD) was generated to examine the functional significance of this region. The highly conserved arginine at position 284 was replaced with alanine to construct UvrD-R284A. The ability of the mutant allele to function in methyl-directed mismatch repair and UvrABC-mediated nucleotide excision repair was examined by genetic complementation assays. The R284A substitution abolished function in both DNA repair pathways. To identify the biochemical defects responsible for the loss of biological function, UvrD-R284A was purified to apparent homogeneity, and its biochemical properties were compared with wild-type UvrD. UvrD-R284A failed to unwind a 92-base pair duplex region and was severely compromised in unwinding a 20-base pair duplex region. The Km of UvrD-R284A for ATP was significantly greater than 3 mM compared with 80 microM for UvrD. A large decrease in ATP binding was confirmed using a nitrocellulose filter binding assay. These data suggested that the R284A mutation severely reduced the affinity of helicase II for ATP. The reduced unwinding activity and loss of biological function of UvrD-R284A was probably the result of decreased affinity for ATP. These results implicate motif IV of superfamily I helicases in nucleotide binding and represent the first characterization of a helicase mutation outside motifs I and II that severely impacted the Km for ATP.  相似文献   

10.
11.
A novel binding assay to kinin B1 receptors was developed, based on the design of a high-affinity agonist ligand, [125I]Tyr-Gly-Lys-Aca-Lys-des-Arg9-BK. Binding to rabbit aortic smooth muscle cells is highly temperature-dependent (optimal at 37 degrees C); apparent binding equilibrium is reached within 30 min, and competition by kinin analogs reveals the expected correlation with the B1 receptor pharmacology. The dissociation constant (Kd) of the labeled ligand is approx. 0.2 nM and this value does not change significantly as a function of cytokine pretreatment. However, the receptor abundance (Bmax) is significantly increased (1.5-fold) by pretreating the cells with interleukin-1 (IL-1), while oncostatin M (OSM) produces a marginal increase of the Bmax. This assay may be useful in documenting the regulation of B1 receptors in pathology.  相似文献   

12.
The DNA binding properties of a series of imidazole-containing and C-terminus-modified analogues 4-7 of distamycin are described. These analogues contain one to four imidazole units, respectively. Data from the ethidium displacement assay showed that these compounds bind in the minor groove of DNA, with the relative order of binding constants of 6 (Im3) > 7 (Im4) > 5 (Im2) > 4 (Im1). The reduced binding constants of these compounds for poly(dA-dT) relative to distamycin, while they still interact strongly with poly(dG-dC), provided evidence of GC sequence acceptance. The preferences for GC-rich sequences by these compounds were established from a combination of circular dichroism (CD) titration, proton nuclear magnetic resonance (1H-NMR), and methidiumpropylethylenediaminetetraacetate-iron(II) [MPE.Fe-(II)] footprinting studies. In the CD studies, these compounds produced significantly larger DNA-induced ligand bands with poly(dG-dC) than poly(dA-dT) at comparable ligand concentrations. 1H-NMR studies of the binding of 5 to d-[CATGGCCATG]2 provided further evidence of the recognition of GC sequences by these compounds, and suggested that the ligand was located on the underlined sequence in the minor groove with the C-terminus oriented over the T residue. MPE footprinting studies on a GC-rich BamHI/SalI fragment of pBR322 provided unambiguous evidence for the GC sequence selectivity for some of these compounds. Compounds 4 and 7 produced poor footprints on the gels; however, analogues 5 and 6 gave strong footprints.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Scatchard analysis of prolactin binding sites (PRL-BS) from ejaculated spermatozoa showed a single population of binding sites (apparent association constant: 2.51+/-0.186 nmol/l[-1]) with 0.317+/-0.0743 fmol/10(6) sperm binding sites. Different pools of spermatozoa were incubated with increasing concentrations of several hormones. There was a decrease in [125I]-oPRL binding with purified ovine prolactin (oPRL) and human growth hormone (hGH) which was not observed in the presence of synthetic ACTH and recombinant FSH, suggesting that binding was hormone specific. When the patient's samples were analyzed using the single point assay at saturation concentration, asthenospermic patients showed a significantly higher concentration of binding sites compared to normospermic ones. Both groups of patients displayed similar PRL levels in seminal plasma measured by DELFIA. Moreover, individual values of PRL levels in seminal plasma did not correlate with PRL-BS concentrations. We thus conclude that [125I]-oPRL binding to ejaculated spermatozoa was hormone specific and with similar parameters as seen in other target tissues. PRL-BS concentration in asthenospermic patients was significantly higher than in normospermic but this was not due to different levels of PRL in seminal plasma.  相似文献   

14.
The kinetic and thermodynamic parameters for purine repressor (PurR)-operator and PurR-guanine binding were determined using fluorescence spectroscopy and nitrocellulose filter binding. Operator binding affinity was increased by the presence of guanine as demonstrated previously (Choi, K. Y., Lu, F., and Zalkin, H. (1994) J. Biol. Chem. 269, 24066-24072; Rolfes, R. J., and Zalkin, H. (1990) J. Bacteriol. 172, 5637-5642), and conversely guanine binding affinity was increased by the presence of operator. Guanine enhanced operator affinity by increasing the association rate constant and decreasing the dissociation rate constant for binding. Operator had minimal effect on the association rate constant for guanine binding; however, this DNA decreased the dissociation rate constant for corepressor by approximately 10-fold. Despite significant sequence and structural similarity between PurR and LacI proteins, PurR binds to its corepressor ligand with a lower association rate constant than LacI binds to its inducer ligand. However, the rate constant for PurR-guanine binding to operator is approximately 3-fold higher than for LacI binding to its cognate operator under the same solution conditions. The distinct metabolic roles of the enzymes under regulation by these two repressor proteins provide a rationale for the observed functional differences.  相似文献   

15.
Escherichia coli MutS, MutL, and DNA helicase II are sufficient to initiate mismatch-dependent unwinding of an incised heteroduplex (Yamaguchi, M., Dao, V., and Modrich, P. (1998) J. Biol. Chem., 273, 9197-9201). We have studied unwinding of 6.4-kilobase circular G-T heteroduplexes that contain a single-strand incision, 808 base pairs 5' to the mismatch or 1023 base pairs 3' to the mispair as viewed along the shorter path between the two DNA sites. Unwinding of both substrates in the presence of MutS, MutL, DNA helicase II, and single-stranded DNA binding protein was mismatch-dependent and initiated at the single-strand break. Although unwinding occurred in both directions from the strand break, it was biased toward the shorter path linking the strand break and the mispair. MutS and MutL are thus sufficient to coordinate mismatch recognition to the orientation-dependent activation of helicase II unwinding at a single-strand break located a kilobase from the mispair.  相似文献   

16.
17.
We have investigated the thermodynamic aspects of the ligand binding to chromatin, using isothermal titration calorimetry. Two classical DNA ligands were used: an intercalator, ethidium bromide, and a minor groove binder, netropsin. Stoichiometry, affinity constant, and thermodynamic parameters were determined at various salt concentrations and different temperatures. The effect of ionic strength was analyzed according to the Record theory applied to chromatin. We also compared the binding parameters on naked DNA, H1/H5-depleted chromatin, and chromatin. We demonstrated that the presence of histones on DNA still allows the ligand binding that takes place according to a simple one single-site model. For both ligand types, the thermodynamic driving force is enthalpic and the association is characterized by a somewhat weaker affinity and more scattered ligand distribution than on naked DNA. The ligand affinity is weakly altered by the salt-induced compaction of the chromatin and the binding is accompanied by a release of one counterion per ligand molecule. The temperature-dependent studies revealed the existence of a small heat capacity change associated with ligand binding to chromatin, together with an enthalpy-entropy compensation that maintains the free energy constant over the investigated temperature range.  相似文献   

18.
Several kinds of naturally occurring fernane-type triterpenoids isolated from a Euphorbia genus were tested on the inhibitory effects of DNA Topoisomerases I (Topo I) and II (Topo II) activities. A-ring cleaved 3,4-seco-8 beta H-ferna-4(23),9(11)-dien-3-oic acid and its 3-hydroxyl derivative were found to be selective inhibitors of Topo II activity without the stabilization of a DNA/Topo II cleavable complex.  相似文献   

19.
The complexes 1,10-phenanthrolineethylenediamineplatinum(II) and 2,2'-bipyridineethylenediamineplatinum(II) have a planar, aromatic ligand system that facilitates intercalation, as shown by their ability to unwind closed circular duplex DNA. Nonbonded steric interactions can rotate the pryidine ligands out of the coordination plane in bis(pyridine)ethylenediamineplatinum(II), thus preventing intercalation. Fiber x-ray diffraction patterns of the two metallointeracalators indicate that the binding is governed by the neighbor exclusion principle.  相似文献   

20.
Some properties of specific progestogen binding activity in the human cervix are described. High cytosol affinity was observed for progesterone and synthetic progestagens, but not for corticosteroids or norethindrone, medroxyprogesterone acetate, chlormadinone acetate, progesterone, 5alpha-pregnane-3,20-dione, norethindrone acetate, 17alpha-hydroxyprogesterone, cortisol, and estradiol. Progesterone binding in cytosols with high concentrations of CBG-like contaminants had a dissociation rate constant of 6.9 X 10(-5)s(-1). Ka values were similar for binding sites throughout the cervix, with concentrations being highest in the region around the columnar epithelium. Concentrations of binding sites per mg DNA were similar in the columnar epithelium and stroma, but higher in the squamous epithelium. Progesterone binding to endometrial tissue was greater than that for the corresponding cervix. Mean concentrations per mg were markedly higher during the proliferative phase than the secretory phase of the menstrual cycle, though this difference in terms of concentrations per mg DNA was significant only for cervical cytosols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号