首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 611 毫秒
1.
该系统以C8051F020单片机为核心,将各种传感器得到的信息进行综合判别和处理,然后发出指令给电机驱动器,通过改变单片机输出的PWM来控制电机的转速控制智能小车,使之能够在规定的时间内沿跷跷板上的引导线行驶完各规定路程段;并凡能够对跷跷板是否到达平衡状态进行检测,使电动车做出相应的动作响应.通过对小车控制系统的软硬件...  相似文献   

2.
张桂红 《通讯世界》2016,(21):236-237
本设计是基于LDC1000电感传感器单片机控制的简易自动寻迹小车系统,旨在设计出一款可以按照预设的轨迹行走.控制系统以STC12C5A60S2、MSP430F5529为控制核心,用单片机产生PWM波,控制小车速度.利用LDC1000对路面铁丝轨迹进行检测,并确定小车当前的位置状态,单片机对采集到的信号予以分析判断,及时控制驱动电机以调整小车转向,从而使小车能够沿着铁丝轨迹自动行驶,实现小车自动寻迹的目的.  相似文献   

3.
设计方案以MSP430单片机为系统的控制核心,采用反射式光电传感器模块寻迹,实现智能小车的自动寻迹行驶。在实验中采用与白色相差很大的黑色引导线作为智能小车的既定路线,系统驱动采用控制方式为PWM的直流电机。详细介绍了反射式光电传感器寻迹模块的工作原理,寻迹模块的电路图以及在以MSP430单片机为控制核心的基础上如何实现智能寻迹小车的自动寻迹行驶。并简要介绍了系统的电路图。该技术可用于无人生产线、服务机器人、仓库等领域。  相似文献   

4.
智能红外避障小车利用红外传感器对障碍物和行驶的路况进行判断,从而使小车能顺利地绕过障碍物。文章提出了一种基于STC89C52单片机的智能红外避障小车的设计与实现方法。该设计以两个直流电动机为主动力源进行驱动。电机驱动电路采用了L298N驱动芯片,通过红外传感器来采集信息,并送入主控单片机(STC89C52)进行处理,数据处理完成后执行相应动作,以达到自动控制的目的。本设计中避障模块采用红外线收发来完成,由控制单元处理数据后执行相应动作,实现了无人干预也可完成一系列动作的功能。  相似文献   

5.
本系统以MSP430单片机为控制核心,整个小车采用模块化设计方案,采用L298N芯片作为两只直流减速电机的驱动模块,利用各种相关传感器实时监测小车;利用金属感应器,不与目标物实际接触情况下检测靠近传感器的金属目标物;采用霍尔元件检测磁场及其变化从而检测小车行驶速度;采用1602LCD实时显示,整个设计具有节约能源、运行稳定可靠的特点。  相似文献   

6.
文章利用MSP430F149单片机、TPS63020芯片、TCRT5000红外传感器、无线充电模块、计时控制电路、自启动电路、DC DC模块和直流电机等模块设计并制作了一个可循迹的电动小车动态无线充电系统,可通过灯光显示是否处于充电状态,小车检测到发射线圈停止工作时可自行启动,并在行驶期间实现动态充电,设计了电容"快充慢放"电路,能够完成预期功能,在电能输出效率最优情况下沿引导线稳定行驶。  相似文献   

7.
智能小车可适应复杂恶劣的环境,进入人无法进入的环境中完成探测任务,应用前景非常广泛。智能小车的设计涉及到电路设计、程序设计、传感器原理、控制技术等诸多方面。文章主要说明基于STC89C52单片机的智能环境探测小车设计。利用火焰传感器自动探测火源,单片机输出PWM波控制直流电机对小车进行驱动,经自动避障后到达起火点,检测并显示火场烟雾浓度,达到探测火场环境的目的。也可根据具体需要,利用红外遥控对小车进行远程控制。  相似文献   

8.
本文以凌阳16位单片机(SPCE061A)为控制核心,采用红外光电传感器配合陀螺仪,完成避障、路径搜索、循迹等功能;利用接近开关实现对铁块的检测,并通过电磁铁完成对铁块的拾取、释放(模拟救援),最终实现小车智能救援的功能。系统还采用液晶实时显示时间和速度等,通过语音和灯光进行报警,利用无线模块和上位机通信实现对小车的监视,从而达到在远程PC机上实时了解小车的行驶状况的功能。  相似文献   

9.
智能车辆是目前世界车辆研究领域的热点和汽车工业新的增长点。本文设计了一个能自动循迹的智能小车控制系统。以AT89C51单片机为控制核心,利用反射式光电传感器检测黑线实现小车循迹,利用超声波传感器检测道路上的障碍并提示,利用LCD1602显示小车的速度和路程。载入测试程序,无需干预,前进、后退、左拐、右拐自动驾驶。利用车头两侧设有的红外传感器,实时判断障碍物偏移量,实现智能跟随。利用红外遥控前进、后退、左拐、右拐随意切换。能实现小车自动根据地面黑线前进倒退、转向行驶,自动驾驶,智能跟随,遥控控制,超声波测距提示障碍物的功能,LCD1602实时显示小车距障碍物的距离。  相似文献   

10.
宁慧慧  余红英 《电子测试》2009,(9):39-41,57
本文介绍了一种基于单片机控制的简易自动寻迹小车设计,包括小车系统构成软硬件设计方法。该小车以AT89C51为控制核心,利用红外光电传感器对前方障碍物信息及路面信息进行采集,并将障碍物检测信号和路面检测信号反馈给单片机。单片机对采集到的信号予以分析判断,及时控制驱动电机以调整小车转向,从而使小车能够沿着黑色导引带自动行驶,实现小车自动寻迹的目的。该技术可以应用于无人驾驶机动车,无人工厂、仓库、服务机器人等领域。  相似文献   

11.
按照全国大学生智能车竞赛的规则,设计一种两轮直立智能寻迹小车.小车以MC9S12XS128单片机(MCU)为控制单元,利用线性TSL1401CCD传感器采集赛道信息,陀螺仪检测小车的角速度,加速度计测量小车的加速度.MCU计算出控制左右电机转速的PWM输出量,通过控制电机转速实现小车的直立、速度和方向控制.测试表明线性TSL1401CCD传感器具有很好的前瞻性,硬件系统稳定可靠,软件能够及时有效对小车进行PID控制,小车能够实时跟踪赛道,完成比赛.  相似文献   

12.
江天亮 《电子科技》2013,26(8):109-112
设计采用AT89C51作为智能型小车的控制中心,通过寻迹电路检测路面标识,使小车按预定轨道行驶,通过角度控制单元检测小车平衡情况,控制小车驱动电路的工作状态,使其达到平衡,再通过相关硬件的软件设计控制,实现智能化。  相似文献   

13.
设计了一种基于飞思卡尔MC9S12DG128单片机控制的智能寻迹车系统。该系统以MC9S12DG128为控制核心,采用CCD图像传感器检测路面信息,利用加速度传感器检测加速度,红外传感器检测速度.采用PID算法控制智能车直流驱动电机和模糊控制算法控制舵机转向,从而实现智能车快速稳定地寻黑线行驶。  相似文献   

14.
介绍一种基于MSP430F2274单片机为核心的智能小车。小车采用超声波测距技术实现自动避障,同时通过语音模块来播报出小车与障碍物的距离。为了使测距不受温度影响,用温度传感器实时检测小车周围环境的温度并修正距离计算公式的参数,采用光电编码器来检测小车的速度,运用PID控制算法和PWM来控制小车的精确稳定的运行,从而达到预期的设计目标。  相似文献   

15.
本文设计了一种基于飞思卡尔单片机的两轮车控制系统。该系统以飞思卡尔单片机为核心,采用加速度传感器和陀螺仪来检测小车当前姿态,结合互补滤波算法控制小车的平衡;然后由摄像头检测路况信息,控制小车的行驶方向;最后采用PID算法通过直流电机驱动电路在固定的周期内交替地控制小车的平衡和行驶方向,使小车按预设轨道行进。  相似文献   

16.
在检验电梯时,一般情况下检验人员都是用人眼来判断缓冲器复位时间的,这时都需要检测人员蹲在电梯轿厢坑底,这样对检验人员来说环境是很差的,而且又是很危险,检测结果也是很不准确的。本文就介绍一实用方便的电梯缓冲器测试仪传感器的电路,它利用光电开关来检测轿厢和缓冲器脱离信号,进而得到触发电压,并且通过外接555斯密特触发器来转换电平,然后通过接口把信号送进微处理器来判断缓冲器复位时间。  相似文献   

17.
综合实验旨在设计一款基于STM32的无线充电小车,实验采用两轮电机驱动智能小车,使车身质量减轻,同时减少小车的电能消耗。选用STM32F103ZET6单片机作为核心板完成对小车的整体控制,在循迹避障方面通过红外传感器来采集路面信号,信号经过分析处理后,使用L298N电机驱动模块来驱动小车运动。在供电部分采用可充电锂电池作为小车的电源供应,并配套无线充电模块用于对电池的充电。通过综合实验的训练达到拓展学生的创新思维的目的。  相似文献   

18.
为使汽车发生车祸时可在最短的时间内得到援救,以减少车祸伤亡,设计一种基于加速度的车祸报警系统。系统采用MMA7455三轴加速度传感器测量车辆的加速度,根据设定的加速度实现车祸状态的报警。一旦判断发生车祸事故,通过GSM将信息发送至已设置的手机号码,以便于及时救援。  相似文献   

19.
采用特定频率的声音信号作为声源对小车进行导航,使小车能够通过接收和处理声信号以确定声源方向和位置,并行进至声源处的功能。其中,用硬件滤波电路对声信号进行滤波处理,由FPGA计算声信号到达的时间差,单片机计算出声源偏离小车的角度和距离并产生PWM波驱动电机运转。在行进过程中,小车可以自主追踪移动声源,修正移动路径。准确到达声源处是声导航自行小车的重点和难点。  相似文献   

20.
马超  罗文广  陈剑  苏鑫 《电子科技》2012,25(6):27-29,33
汽车BCM在车身功能控制系统中起着举足轻重的作用,因此汽车BCM出厂前的功能检测一直得到企业和消费者的高度重视。目前多数企业仍使用人工测试的方法,而本次自动检测系统是采用三星公司的S3C2440作为核心控制器,在嵌入式Linux系统下使用Qtopia应用开发平台搭建控制界面添加检测控制程序,通过接口板连接汽车BCM从而实现自动检测功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号