首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonreturn-to-zero (NRZ) and return-to-zero (RZ) signal formats are experimentally and numerically compared for single-channel long-distance transmission in an in-line amplifier system with dispersion management providing average zero dispersion and local nonzero dispersion at an interval equal to the in-line amplifier spacing. Among a 20-ps RZ signal, a 40-ps RZ signal, and an NRZ signal transmitted in 10 Gb/s straight-line experiments, the last signal achieves the longest transmission distance of 6000 km while the others are limited to 4400 km. Numerical simulations explain these results well and show that, along with linear amplified spontaneous emission (ASE) accumulation, signal waveform distortion due to the combined effect of higher order group-velocity dispersion (GVD) and self-phase modulation (SPM) dominates the performance. Nonlinear optical noise enhancement is not obvious because of the fiber dispersion arrangement. Signals with large pulse widths are less affected by the combined effect, while small-width signals yield superior initial signal-to-noise ratio (SNR) as determined by optical noise. A detailed simulation indicates that a pulse width of about 60 ps is optimum for long distance transmission under the fiber dispersion arranged in this paper  相似文献   

2.
We demonstrate a 10-Gb/s polarization-mode dispersion (PMD) compensation experiment by using a 4-degree of freedom compensator for both NRZ and RZ formats. The particle swarm optimization method is used as the searching algorithm and an adaptive dithering algorithm is employed in tracking process. The results show that the searching process is finished within several hundreds of milliseconds and the response time for the compensator to recover from a sudden disturbance is less than 20 ms.  相似文献   

3.
对单信道40Gbit/s归零码(RZ)和非归零码(NRZ)传输系统进行了实际模拟。考虑了光纤损耗,二阶群速率色散、三阶群速度色散、偏振模色散及放大器噪声对系统影响,采用Q值判别法计算了系统可传输的最大距离,给出了系统眼图。计算结果表明,RZ的最大传输距离大于NRZ码,RZ系统传输性能优于NRZ系统。  相似文献   

4.
建立了自适应偏振模色散补偿系统,利用偏振度作为反馈信号,对40 Gb/s的RZ和NRZ码分别进行了PMD补偿的数值模拟,结果显示,采用DOP作反馈信号、用二段补偿器和三段补偿器对二种码型的PMD补偿均是有效的.但由于高阶PMD的影响对NRZ码的补偿效果要优于RZ码,特别是存在偏振相关色散的影响时,对RZ码的补偿的影响在明显大于NRZ码,这说明,对于RZ码补偿偏振相关色散是必要的.  相似文献   

5.
利用分步傅里叶变换求解在双折射光纤中的耦合非线性薛定谔方程,数值计算了偏振模色散(PMI)对20Gbit/s的非归零码(NRZ)和归零码(RZ)通信系统的影响,通过数值计算发现采用一定脉冲宽度的RZ可以有效地降低PMD对通信系统的影响,并在此基础上,计算了系统传输最大距离时所满足的脉冲最佳宽度。  相似文献   

6.
The relationship between Q penalty (QP) and eye-closure penalty (ECP) is examined for distorted signals in the presence of signal-dependent noise. A simple model is developed to describe the behavior of return-to-zero (RZ) modulation formats and is compared with a model for nonreturn-to-zero (NRZ) formats. The accuracy of the analysis is investigated with extensive simulations, and the numerical results from analysis and simulation are found to be in generally good agreement. Experimental measurements of distortion caused by uncompensated dispersion also show agreement with the simulation results and model predictions. The simplified models allow a means to budget QPs from distortion effects in a straightforward manner during network design for different modulation formats. The analysis predicts a smaller Q penalty as a function of ECP for RZ modulation formats in comparison with NRZ and smaller relative penalties for RZ formats with narrower pulsewidths.  相似文献   

7.
This paper describes the transmission performance of prechirped return-to-zero (RZ) and prechirped carrier-suppressed return-to-zero (CS-RZ) signals over a periodically dispersion-compensated transmission line. We analyze the transmission characteristics of both formats, taking account the transmitter configuration expected, in which pulse chirping is generated by using both a phase modulator and a linear dispersion compensating device. We also discuss the dependence of the transmission characteristics on phase modulation, pre- and postcompensating dispersion, and receiver optical and electrical filter widths. We show that, in single-channel transmission, phase modulation effectively reduces the intrachannel nonlinear interaction and improves the transmission performance. Next, we discuss the transmission characteristics of chirped RZ and chirped CS-RZ signals in dense wavelength division multiplexed (DWDM) signal transmission. In 100-GHz spaced 40-Gb/s-per-channel systems, it is shown that the phase modulation must be carefully optimized in order to minimize the linear crosstalk and waveform distortion induced by the intra- and interchannel nonlinear interaction in the transmission fiber  相似文献   

8.
9.
Dynamic response of semiconductor ring lasers (SRLs) to external optical injection with nonreturn-to-zero (NRZ) and return-to-zero (RZ) waveforms is investigated using a model including linear and nonlinear mode coupling. The switching characteristics are simulated under various device sizes, injection power levels, and frequency detuning. For NRZ, the switching time reduces with decreasing SRL radius, which has a reasonable agreement with the current experimental results. It is also demonstrated that RZ pulse with duration of several picoseconds can reliably switch 6-mum radius SRL over a detuning range of more than 100 GHz, with the end state self-sustained after switching.  相似文献   

10.
光纤数字通信中NRZ与RZ码序列的定时时钟提取   总被引:1,自引:0,他引:1  
在光纤数字通信系统中,NRZ非归零码和RZ归零码是最常见的基带信号。由于两者频谱成分不同,其定时时钟提取方式则不同。本文通过对NRZ、RZ伪随机码序列进行频谱分析,得知当NRZ码变换成码元占空比为1/2的RZ码时,所提取出的定时时钟功率最强。  相似文献   

11.
We experimentally demonstrate a scheme for all-optical reshaping at 40 Gb/s that is wavelength preserving and transparent to both nonreturn-to-zero and return-to-zero on-off keying signals. Eye-diagram reshaping is confirmed by means of bit-error rate versus threshold measurements on both modulation formats. The scheme is based on cross-gain compression in an semiconductor optical amplifier (SOA) and uses two SOAs that are not in interferometric configuration. Due to its working principle, this method is polarization-independent and suitable, in principle, for higher bit rates.  相似文献   

12.
This letter presents a novel configuration for return-to-zero (RZ) differential phase-shift keyed (DPSK), carrier-suppressed (CS) RZ DPSK, and chirped nonreturn-to-zero (CNRZ) signal generation, which only requires a single-stage dual-electrode Mach-Zehnder modulator (DE-MZM). RZ-DPSK, CSRZ-DPSK, or CNRZ signals can be generated via the same configuration by changing the DE-MZM operating conditions. Analytical derivation and simulation on signal generation and wavelength-division-multiplexed transmission was also carried out to justify the equivalence of the proposed scheme and conventional methods. The proposed scheme is expected to be more cost-effective due to the reduction in required modulator number.  相似文献   

13.
Wang  J. Sun  J. Zhang  X. Huang  D. 《Electronics letters》2008,44(6):413-414
Reported is an all-optical high-speed three-input logic AND gate using cascaded sum- and difference-frequency generation (cSFG/DFG) in a periodically poled lithium niobate (PPLN) waveguide. The converted idler wave via cSFG/DFG carries the AND result of the three-input signals. PPLN-based 40 Gbit/s three-input logic AND operations for both non-return-to-zero (NRZ) and return-to-zero (RZ) signals are successfully demonstrated in the experiment.  相似文献   

14.
This paper investigates the influence of filter bandwidth and flank steepness of both multiplexing and demultiplexing filters in dense wavelength division multiplexed systems (spectral efficiency 0.8 b/s/Hz) in the presence of coherent wavelength division multiplexing (WDM) crosstalk. Using a recently introduced technique for the statistically reliable performance prediction of systems impaired by coherent WDM crosstalk, this paper presents numerical results for nonreturn-to-zero (NRZ), 33% duty-cycle return-to-zero (RZ), and 67% duty-cycle carrier-suppressed return-to-zero signals. This paper confirms that steep filter flanks are generally preferable, both in terms of optical signal-to-noise ratio penalty and in terms of filter bandwidth tolerance.  相似文献   

15.
We present a packet-by-packet contention resolution scheme that combines packet detection, optical space switching, and wavelength conversion performed in the optical domain by integrated optical switches. The packet detection circuit provides the control signals required to deflect and wavelength-convert the contending packets so that all the packets are forwarded to the same output without any collision or packet droppings. We demonstrate the compatibility of the scheme with both nonreturn-to-zero (NRZ) and return-to-zero (RZ) modulation formats by recording error-free operation for 10-Gb/s NRZ and 40-Gb/s RZ packet-mode traffic  相似文献   

16.
We describe a detailed numerical investigation on the relative merits of gain flattened distributed Raman amplification (DRA) and discrete gain flattened amplifiers. We simulate a system with forty 40-Gb/s channels spaced at 100 GHz and compare the performance of three different modulation formats nonreturn-to-zero (NRZ), return-to-zero (RZ) and carrier-suppressed RZ (CS-RZ). Three types of amplifiers, multifrequency backward- and forward-pumped DRAs, and an idealized discrete gain flattened amplifier are examined for various signal powers and transmission distances. For the backward-pumped DRA, we also describe calculated tolerance limits imposed by incomplete dispersion slope compensation and polarization mode dispersion (PMD) level  相似文献   

17.
The use of nonreturn-to-zero (NRZ), return-to-zero (RZ), and carrier-suppressed return-to-zero (CSRZ) modulation formats in an ultradense wavelength-division multiplexing (UDWDM) scenario at 40 Gb/s is investigated. The results of a simulative analysis on back-to-back setups are presented. Narrow optical filtering at the receiver and at the transmitter, as well as the orthogonal polarization launch of adjacent channels, is studied in order to improve spectral efficiency. We demonstrate that standard setups do not allow acceptable performances with 50-GHz channel spacing for all the considered modulation formats, while the use of a transmission optical filter may dramatically improve the performance of RZ and CSRZ modulation formats that become suitable for the use in UDWDM systems. We show that, due to the narrow transmission filtering, the RZ pulse becomes NRZ-like, and the CSRZ modulation is duobinary coded. Furthermore, we demonstrate that NRZ modulation does not benefit from the introduction of a transmission optical filter, while it takes advantage of the orthogonal polarization launch of adjacent channels, but its performance is still worse than the RZ and CSRZ performance in a UDWDM scenario.  相似文献   

18.
NRZ码和CSRZ码在40 Gbit/s单通道系统中传输性能分析   总被引:2,自引:0,他引:2  
文章仿真了非归零码(NRZ)和载波抑制归零码(CSRZ)在40 Gbit/s单通道系统中G.652光纤上传输6×80 km的性能.比较了两种码型对接收端光滤波器和电滤波器带宽的要求、不同的入纤功率下功率代价以及残余色散对比.结果表明,在高速传输系统中,CSRZ码的传输性能明显优于NRZ码.  相似文献   

19.
The author derives an expression for the power spectral density of an asymmetric nonreturn-to-zero (NRZ) data stream. This formula is used to investigate how the data bandwidth varies with data asymmetry. The threshold levels of undesired spectral components that fall into the carrier tracking loop bandwidth are determined by examining the derived spectral density. Based on this formula, a simple technique is developed for the computation of bit signal-to-noise ratio (SNR) degradation due to data asymmetry. The telemetry bit SNR degradations derived using this technique are compared with the results obtained previously by M.K. Simon et al. (1978) and with measurements by the electronic systems test laboratory (ESTL) at the Lyndon B. Johnson Space Center  相似文献   

20.
An all-optical format conversion from non-return-to-zero(NRZ) to return-to-zero(RZ) is presented based on cross-phase modulation(XPM) in a silicon waveguide with a detuned optical bandpass filter(OBPF).The simulation results show that the tunable bandwidth of the OBPF leads to RZ signals with tunable pulse width.The conversion efficiency(CE) and the pattern effect of the RZ signal are attributed to the parameters of the pump pulse and the OBPF.The converted RZ signal exhibits lower timing jitter than the NRZ signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号