首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 486 毫秒
1.
《粉煤灰》2015,(5)
研究了混凝土中掺入低品位粉煤灰和钢渣粉后其强度变化规律。结果表明:低品位粉煤灰的细度越大对混凝土后期强度的增长更有利,但是高细度粉煤灰会使混凝土早期强度减低。相比只掺入低品位粉煤灰,同时掺入钢渣粉和低品位粉煤灰的混凝土强度可以明显提高,并且随着粉煤灰细度的增加,混凝土强度提高效果越明显。但是钢渣粉掺量对混凝土强度影响不大。  相似文献   

2.
粉煤灰和矿粉双掺的胶砂和混凝土试验研究   总被引:1,自引:0,他引:1  
采用正交试验方法进行胶砂试验,研究粉煤灰和矿粉总掺量、粉煤灰与矿粉比例和水胶比三个影响因素对水泥-粉煤灰-矿粉三元胶凝体系胶砂流动度和强度影响,分析三元胶凝材料体系的水化特点和强度发展规律。并在此基础上配制粉谋灰和矿渣双掺的高性能混凝土,研究表明粉谋灰和矿粉双掺的高性能混凝土早期强度低,后期强度高,混凝土耐久性能好。  相似文献   

3.
为研究粉煤灰对透水混凝土的影响作用,通过在透水混凝土中加入粉煤灰,利用裹石法制作透水混凝土,研究了粉煤灰对透水混凝土抗压强度、抗折强度、孔隙率和透水系数的影响作用。结果表明:粉煤灰的掺入对透水混凝土的性能有明显的影响,抗压强度先降低后增高,粉煤灰掺量为20%的时候抗压强度达到最大值19.6 MPa,随着粉煤灰掺量的继续增加,抗压强度值又逐渐减小;粉煤灰掺量为20%的时候抗折强度达到最大值,说明粉煤灰的最佳掺量在20%左右;随着粉煤灰掺量的增加,孔隙率和透水系数都逐渐减低,早期降低的速率大,后期降低的速率小。  相似文献   

4.
选用粉煤灰、矿粉作为掺合料以单掺和复掺的形式掺入到硅酸盐水泥混凝土中,检测其坍落度和3d、28d抗压强度以及早期抗开裂性能。研究结果表明:矿粉、粉煤灰均会降低混凝土3d强度,矿粉可以提高混凝土28d强度,粉煤灰掺量过大会降低混凝土28d强度。随着矿粉掺量的增加,混凝土坍落度随之降低,粉煤灰刚加入时会使混凝土坍落度降低,但是随着掺量的升高,坍落度会逐渐增大;开裂方面:单掺时,粉煤灰与矿粉都在掺量为37%时,抗开裂效果最佳,其中粉煤灰效果最好,复掺时,随着矿粉相对掺量的变大,裂缝的面积和数目都在增大。  相似文献   

5.
王静静  武斌  刘高凯 《粉煤灰》2015,(3):39-42,46
采用不同掺量的粉煤灰和矿粉配制混凝土,并对配制的混凝土的工作性能和力学性能进行分析。结果显示,掺加矿物掺合料可以提高混凝土的工作性能,但会降低混凝土的早期强度,后期强度会继续发展,当双掺20%粉煤灰和30%矿粉时效果最好。  相似文献   

6.
研究了VAE(醋酸乙烯-乙烯)聚合物乳液的掺入量对钢渣透水混凝土抗压强度、透水系数、用水量的影响,探讨了VAE聚合物乳液对钢渣透水混凝土性能的作用机理.结果表明,一定量的VAE乳液掺量可显著提高钢渣透水混凝土的抗压强度,略微降低透水系数.这对目前普遍强度不高的透水混凝土行业具有积极意义.  相似文献   

7.
对掺加粉煤灰、矿渣微粉和硅粉的混凝土抗压强度进行了试验研究.结果表明:粉煤灰的掺入明显降低了混凝土的抗压强度,并且随着粉煤灰含量的增加而逐渐减小;矿渣微粉的掺人使混凝土早期的抗压强度减小,28d时矿粉的掺入使混凝土的抗压强度增大;但硅粉的掺加提高了混凝土的抗压强度.  相似文献   

8.
研究了钢渣骨料粒径、级配、成型工艺及钢渣混凝土和易性对透水混凝土主要性能的影响.结果表明:钢渣透水混凝土以不超过10.0mm的中小粒径集料为好,采用静压成型工艺为宜.采用单粒径集料有利于在混凝土中形成连通的孔隙通道,提高混凝土的透水性.钢渣透水混凝土较合适的集胶比范围为4.0∶1~5∶1之间.相对于水灰比,混凝土的和易性对其强度和透水性影响更大,只有较好的和易性才能保证透水混凝土具有较高的强度和匀质性.  相似文献   

9.
杭美艳  杨冉 《硅酸盐通报》2018,37(4):1480-1486
研究了单掺粉煤灰、矿渣粉和复掺粉煤灰与矿渣粉对干密度为400 kg/m3泡沫混凝土的抗压强度、导热系数以及吸水率的性能影响.当粉煤灰掺量为10%时,可增加抗压强度,掺量为30%时显著降低导热系数和吸水率;当矿粉掺量为20%时,可增加抗压强度和降低吸水率,但导热系数却随掺量增大而变大;当复掺粉煤灰与矿渣粉取代50%水泥,复掺比例为2:3时,能增加抗压强度和降低吸水率,导热系数随复掺比例增大而变大.在泡沫混凝土中掺加矿物掺合料,不仅可以降低水化热,还可以减少泡沫混凝土的开裂程度,该项研究成果为今后泡沫混凝土在地基保温处理、屋面保温、地暖垫层等方面提供了应用价值.  相似文献   

10.
将上海宝钢的滚筒钢渣磨细得到钢渣粉,通过水泥净浆实验研究了这种钢渣粉的自硬性及火山灰活性,并分别采用Na_2SO_4、CaCl_2和NaCl为激发剂,以不同的掺量激发钢渣粉的水化活性。结果显示,这种钢渣粉具有一定的自硬性,其早期水化活性较低但具有较高的后期水化活性,Na_2SO_4、CaCl_2和NaCl均对钢渣粉及其与矿粉、或者与矿粉+粉煤灰的复合体系具有活性激发作用,但作用规律及最佳掺量各不相同。3种激发剂的最佳掺量分别为0.9%、0.9%和0.3%,激发剂掺量过高会降低激发效果甚至会产生后期强度倒缩。  相似文献   

11.
在高掺量矿渣水泥中掺少量可看作低质熟料的钢渣,弥补由于熟料掺量少造成的碱性不足。当混合材的总量为60%~65%时,钢渣掺量控制在15%~20%左右,只需采用普通外加剂,就能够生产425水泥。工业性试验在太钢东山水泥厂进行。  相似文献   

12.
对矿渣掺加比例达到75%的阿利特高炉矿渣水泥耐久性进行了研究,其强度在28d至6个月期间继续增长;胶砂试体湿涨和干缩率略低于硅酸盐水泥样品数值;这种水泥有很高的抗硫酸盐侵蚀能力.  相似文献   

13.
电解锰渣部分代石膏作缓凝剂的可行性研究   总被引:1,自引:0,他引:1  
冯云  刘飞  包先诚 《水泥》2006,(2):22-24
利用锰渣部分替代石膏作水泥缓凝剂进行了一系列的试验,得出以下结果:锰渣部分替代石膏作水泥缓凝剂在理论和试验方面均是可行的;锰渣与石膏掺量总和在6%~7%(锰渣最高掺量为5%)范围内比较适宜;利用过程中要重视均化与计量工作。  相似文献   

14.
黄从远 《水泥工程》1996,(1):21-22,20
湖北某水泥厂在8.3万T立窑水泥生产线上,成功地开发高铁早强矿渣水泥,并通过了国家建材局水泥专家参加的省级鉴定。该水泥具有早强高,硬化快,抗硫酸盐侵蚀和胶凝性能好等性。  相似文献   

15.
结晶器保护渣渣膜结构的模拟研究   总被引:1,自引:0,他引:1  
通过获得现场不同位置及由结晶器渣膜热流模拟仪获得不同时刻的渣膜,对比分析了渣膜的厚度、结晶率、晶体的分布、大小、类型. 结果表明,结晶器渣膜热流模拟仪铜探头浸入45 s时获得的实验室渣膜与现场弯月面附近45 s的现场渣膜厚度和结晶率相当;现场渣膜随位置在晶体分布上演变规律与实验室渣膜随时间的演变类似;现场渣膜与实验室渣膜的晶体的类型相同,但是晶体大小还存在差异. 因此,可以通过结晶器渣膜热流模拟仪方便、有效的模拟实际结晶器内保护渣渣膜的结晶行为.  相似文献   

16.
韩延阳 《大氮肥》2014,37(5):351-352
气化装置捞渣机设备在运行过程中经常出现堵渣、漂链、回程段积渣严重、机头回程链卡涩频繁等现象,造成捞渣机多次故障跳车.对捞渣机进行技术改造,避免捞渣机故障跳车,延长捞渣机主要部件刮板、导轮的使用寿命.  相似文献   

17.
在炼钢转炉排渣的同时,将一定比例的电炉还原渣和煤渣加入到渣盘中,利用熔融钢渣的余热对钢渣的组成和结构进行在线重构。结果表明,重构处理明显降低了钢渣中的fCaO含量,改善了钢渣的易磨性和压蒸安定性,钢渣粉的28d活性指数提高了10%~20%。  相似文献   

18.
宫晨琛  余其俊 《水泥》2009,(12):1-3
用电炉还原渣在高温重构的转炉钢渣作高活性钢渣胶凝材料,并探讨重构钢渣的水化进程、水化产物和力学性能。试验结果表明:重构钢渣的水化热曲线在水化13-35h都有不同程度的放热峰存在,而未重构钢渣水化72h未见任何放热峰。SEM照片清晰显示相较于未重构铜渣,重构钢渣水化产物数量更多,水化浆体结构更为致密。随着水化龄期的延长,重构钢渣水化XRD图谱中硅酸盐矿物特征峰明显降低,无定形的C—S—H含量提高。重构过程有效改善了钢渣的后期强度,掺重构钢渣水泥的抗压强度的活性指数最高达104.0%。  相似文献   

19.
刘文斌  徐永红 《粉煤灰》2009,21(4):18-19
用电石渣掺量5%、9%、10%、11%、20%、25%、50%、75%制作成胶砂试块,研究电石渣对矿渣的活性激发作用。结果表明:最佳掺量比为电石渣和矿渣1:9,7d抗压强度为13.11MPa,28d抗压强度为16.29MPa。仅电石渣和矿渣掺舍时,最佳用水量为42.5g,28d抗压强度为20.71MPa。  相似文献   

20.
德士古煤气化工艺运行方式总结   总被引:1,自引:0,他引:1  
在全面总结德士古气化炉试运行经验的基础上,进行了优化煤种配比和降低气化操作温度等新尝试。经过一段时间的摸索和考察,肯定了高、低灰熔点煤种的混配可降低入炉煤的灰熔点,保证气流床熔融排渣气化工艺的稳定运行;在低于煤灰熔融温度下进行气化并实施固态排渣工艺是可行和有效的,经十余年的运行,其经济效益明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号