首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
研究了Li_2O–B_2O_3–SiO_2玻璃(LBS)对MgTiO_3–CaTiO_3(MCT)介质陶瓷烧结特性、相组成和介电性能的影响,分析了MCT陶瓷与银电极的共烧行为。结果表明通过液相烧结,LBS能有效降低MCT烧结温度至890℃。X射线衍射结果显示有Li_2MgTi_3O_8、硼钛镁石以及Li_2TiSiO_5等新相生成。随着LBS添加量的增大,陶瓷致密化温度和饱和体积密度降低,介电常数εr、品质因数与谐振频率乘积Q×f也呈现下降趋势,频率温度系数τf向负值方向移动。添加质量分数为20%的LBS的0.97MgTiO3–0.03CaTiO3陶瓷在890℃烧结4h,获得最佳性能εr=16.4,Q×f=11640GHz,τf=–1.5×10–6/℃。陶瓷与银电极共烧界面结合状况良好,无明显扩散。该材料可用于制造片式多层微波器件。  相似文献   

2.
低温烧结CaO-B2O3-SiO2玻璃陶瓷及其性能   总被引:1,自引:0,他引:1  
在CaO-B2O3-SiO2玻璃粉末中,通过添加助烧剂制备了CaO-B2O3-SiO2(CBS)玻璃陶瓷材料.研究了助烧剂P2O5和ZnO的助烧作用、材料的介电性能和相组成、显微结构.分析认为,P2O5能促进低熔点玻璃相的形成,ZnO则可以提高玻璃相的粘度,扩大烧结温度范围,并防止试样变形,复合添加P2O5和ZnO可成功烧结CBS玻璃粉末;在CBS玻璃陶瓷材料中,包含有β-CaSiO3、α-SiO2和CaB2O4三种晶相,晶粒发育均匀,粒径分布较合理,大小为0.5μm左右;添加质量分数为2%的P2O5和0.5%的ZnO作烧结助剂,可制备10MHz下,εr为6.38,tanδ小于0.002的玻璃陶瓷材料;烧结温度低于900℃,可实现银、铜电极共烧,可用作LTCC材料.  相似文献   

3.
讨论B2O3-P2O5-SiO2系低温共烧陶瓷的研究过程。该陶瓷用正交实验设计法安排试验,用单因素法设计陶瓷添加剂试验,用XRD分析其物相组成。从而获得了介电常数为4.1、介电损耗为5.0×10-4的低温共烧陶瓷。结果表明,该瓷料能满足1060℃共烧低介陶瓷的要求。  相似文献   

4.
分别研究了不同含量Li2CO3/V2O5共掺杂和部分Li取代Mg对Mg4Nb2O9基陶瓷烧结特性、显微结构和微波介电性能的影响.结果表明:Li2CO3/V2O5共掺杂或部分Li取代Mg,均能使Mg4Nb2O9基陶瓷的烧结温度从1 400℃降至950℃,但其烧结机理不同.Li2CO3/V2O5共掺杂Mg4Nb2O9(MNLV)样品中的低熔点液相,使MNLV陶瓷的致密化烧结温度降低.部分Li取代Mg显著降低了(Mg(4-x)Lix)(Nb1.92V0.08)O(9-δ)(MLNV)样品的致密化烧结温度.950℃烧结,相对于MNLV样品的品质因数(Q=13276)而言,MLNV样品的Q值(1 759)显著恶化,这是由于Li1+占据Mg2+晶格.使晶体中非谐振项损耗增加.  相似文献   

5.
(Mg1-xCox)TiO3基微波陶瓷介电性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以MgO,Co2O3和TiO2为原料,用固相反应法制备了(Mg1-xCox)TiO3(MCT)系陶瓷.研究了CoTiO3含量对其微观结构和微波介电性能的影响.结果表明:添加适量的CoTiO3,可以适当降低烧结温度,调整烧结温度范围.当掺入量为10 mol%,烧结温度为1350 ℃时,MCT陶瓷具有优良微波介电性能:εr=18.99;Q×f=154000 GHz,τf=-45 ppm/℃.  相似文献   

6.
烧结助剂对CaO-B2O3-SiO2介电陶瓷结构与性能的影响   总被引:1,自引:0,他引:1  
以CaO-B203-Si02(CBS)系微波介质陶瓷为基体材料,采用ZnO和Na2O作为烧结助剂,研究了其微观结构、相组成及介电特性.研究结果表明ZnO在烧结过程中与B2O3及SiO2生成低熔点玻璃相,促进以片状集合体形式存在的CaSiO3晶相合成,显著降低了材料的致密化温度;Na2O虽可促进烧结,但会破坏硅灰石晶体结构,导致微波介电性能显著降低2%(摩尔分数)ZnO取代CaO,在1000℃保温2h,具有较好的微波介电性能εr为5.4.Q·f为22000GHz(测试频率f0为8.5GHz).  相似文献   

7.
CaO-B2O3-SiO2系低温共烧陶瓷的致密化行为及性能   总被引:3,自引:0,他引:3  
吕安国  丘泰  周洪庆  刘敏 《硅酸盐学报》2008,36(9):1277-1281
以CaO-B2O3SiO2(CBS)玻璃粉末为原料.采用流延成形工艺制备了CBS系生料带.生料带在排完胶后可以在775~950℃内烧结.研究了生料带在烧成过程中致密化和晶化行为以及烧成温度对其介电性能和烧结性能的影响.结果表明:烧成样品中的主晶相为β-CaSiO3,850~900℃烧成样品中有少量CaB2O4.在样品烧成过程中,排胶后的CBS玻璃粉末首先烧结致密化,然后才开始晶化,即致密化过程要早于晶化过程,CBS玻璃的析晶倾向于整体析晶, 这有利于CBS玻璃粉末的烧结.由于玻璃中析出晶相与残余玻璃相存在密度差,烧成样品的体积密度随着烧成温度的升高而降低.烧成温度的升高可促使玻璃中晶体析出和长大,且析出晶相具有比CBS玻璃低的相对介电常数(岛),样品的εr随烧成温度的升高呈下降趋势.  相似文献   

8.
采用传统固相反应法制备(1-x)Mg3(VO4)2-xBiNbO4复合微波介质陶瓷材料,研究陶瓷的烧结特性、微观结构和微波介电性能。结果表明:当x从0.2增加到0.6,在最佳烧结温度制备的Mg3(VO4)2-BiNbO4陶瓷的机械品质因数与频率的乘积(Q×f)随x增大而减小,相对介电常数(εr)随x增大而增大,谐振频率温度系数(τf)随x增大从正变为负;通过调节x值,在x=0.2处获得近零的τf。Mg3(VO4)2与BiNbO4的复合可实现低温烧结;当x=0.2、850℃的低温致密成瓷获得了优良的微波介电性能:εr=14.76,Q×f=27930GHz(f0=8.29GHz),τf=3.65×10-6/℃。  相似文献   

9.
La2O3—TiO2系陶瓷物相与介电性能研究   总被引:4,自引:0,他引:4  
固相法合成La2O3-TiO3系陶瓷介质材料,XRD、SEM、EDS分析其结构、形貌和成分。高精度电容测量仪测试其介电性能。La2O3/TiO2比1:2、2:9组分可获得极低介质损耗,XRD分析主晶相为La2Ti2O7和La4Ti9O24,La2O3/TiO2比1:3组分可获得La2/3TiO3、La4Ti9O24复相,缺陷型钙钛矿相La2/3TiO3不利于介质损耗降低。EDS分析表明晶界富集Si杂质,有效促进了液相烧结。  相似文献   

10.
以1.7%(质量分数)V2O5为烧结助剂,采用传统固相反应法制备了(1-x)Mg4Nb2O9 xCaTiO3[(1-x)MN-xCT]颗粒复合微波介质陶瓷.研究了陶瓷的微观结构和微波介电性能.结果表明:当0.5≤x≤0.7时,经1 150℃烧结5 h制备的(1-x)MN-xCT样品仍为Mg4Nb2O9和CaTiO3相,没有生成其它新相,在不同相之间存在元素扩散.当x从0.3增加到0.7,样品的相对介电常数(εr)和谐振频率(f)温度系数(τf)随x值的增加而增大,而品质因数(Q)却随x增大而降低.当x=0.5,1 150℃烧结5h后,获得的0.5Mg4Nb2O9/0.5CaTiO3 1.7%V2O5微波介质陶瓷的εr=20,Qf=48000 GHz(f=8 GHz),τf=12×10-6/℃.  相似文献   

11.
微波介质陶瓷及其低温烧结研究进展   总被引:6,自引:0,他引:6  
陈国华 《中国陶瓷工业》2004,11(5):41-44,51
微波介质陶瓷是现代通讯技术中的关键基础材料,它的应用日益受到人们的重视。本文简要介绍了四类微波介质陶瓷的研究现状.着重评述了微波介质陶瓷在低温烧结方面的最新研究进展。  相似文献   

12.
采用固相法制备了Cata4Ti4O15系微波介质陶瓷.研究了不同预烧温度对CaLa4Ti4O15陶瓷烧结特性和微波介电性能的影响.在1 200℃预烧caLa4Ti4O15粉末.除CaLa4Ti4O15主相外,还存在部分CaTiO3,La2Ti2O7和La2TiO5混合相.在1 300℃和1 400℃预烧后.获得了六方类钙钛矿CaLa4Ti4O15单相.CaLa4Ti4O15粉末预烧后可饶结成高致密陶瓷(相对密度约97%),同时具有高机械品质因数与谐振频率的乘积(Q×f)值和近零谐振频率温度系数(Tf).1 550℃烧结的CaLa4Ti4O15陶瓷具有优异的微波介电性能:相对介电常数εr=45.1,Q×f=46087GHz,tf=-14.1 × 10-6/℃(预烧温度1 200℃);εr=-45.9,Q×f=48871GHz,tf=-14.4 ×10-6/℃(预烧温度1 300℃).  相似文献   

13.
研究了CuO–V2O5–Bi2O3作为烧结助剂对Zn3Nb2O8陶瓷的烧结特性、微观结构、相结构及微波介电性能的影响。CuO–V2O5–Bi2O3复合掺杂可以将Zn3Nb2O8陶瓷的烧结温度从1150℃降到900℃。在900℃烧结4h的Zn3Nb2O8–0.25%(质量分数,下同)CuO–1.5%V2O5–1.5%Bi2O3陶瓷的密度达到了理论密度的98.1%,相对介电常数为18.8,品质因数与谐振频率之积为39442GHz。该体系的介电性能和陶瓷的致密度与烧结助剂的含量及烧结温度密切相关,陶瓷的致密度和相对介电常数随CuO–V2O5–Bi2O3烧结助剂含量的增加而增加,同样陶瓷的致密度和相对介电常数也随烧结温度的升高而提高。  相似文献   

14.
微波介质陶瓷及器件研究进展   总被引:47,自引:9,他引:47  
杨辉  张启龙  王家邦  尤源  黄伟 《硅酸盐学报》2003,31(10):965-973,980
现代移动通信、无线局域网、全球卫星定位系统等技术的革新,对以微波介质陶瓷为基础的微波电路器件提出了更高的要求,各种微型化、高频化、片式化、模块化的新型微波介质陶瓷器件及相关介质陶瓷得到迅速发展。综述了近几年在高介电常数、高频、低温烧结微波介质陶瓷方面的进展,对不同材料体系的离子取代、离子置换、低熔点烧结助剂对微波介质陶瓷结构、介电性能的影响进行了分析讨论。概述了介质谐振型、叠层型、功能模块型微波介质陶瓷器件的研究和生产情况,重点论述了与低温共烧技术相关的介质陶瓷、器件及模块的进展,探讨了材料特性、微波器件结构与微波特性之间的关系,并指出了今后微波介质陶瓷及器件的发展方向。  相似文献   

15.
(Zn1-xMgx)TiO3微波陶瓷系统介电性能的研究   总被引:11,自引:1,他引:10  
对 (Zn1-xMgx)TiO3 系统的微观结构和介电性能进行了研究。通过添加一定量的MgO稳定ZnTiO3 六方钛铁矿结构 ,有效抑制了ZnTiO3 分解为Zn2 TiO4 和TiO2 。同时 ,通过调整x值 (x =0 .1~ 0 .4) ,可以获得介电性能优良的微波瓷料。当x=0 .3~ 0 .3 5时 ,在 10 6 0℃烧结 ,其品质因数Q0 >2 0 0 0 0 ( 6 .5GHz) ,谐振频率温度系数τf≈ 2× 10 - 6 /℃ ,介电常数ε =18~ 2 2。通过研究发现热处理可以改变系统微观形貌 ,其品质因数Q0 与热处理温度关系密切 ,当保温时间均为 2h时 ,随着热处理温度的升高 ,Q0 从 2 3 83 3 .93相应升高到 475 84.0 0。  相似文献   

16.
ZnO和Na2O对CaO-B2O3-SiO2介电陶瓷结构与性能的影响   总被引:10,自引:0,他引:10  
研究了烧结助剂ZnO和Na2 O对CaO -B2 O3 -SiO2 (CBS)系微波介质陶瓷介电性能、相组成及结构特性的影响。烧结助剂ZnO在烧结过程中与B2 O3 及SiO2 生成低熔点玻璃相 ,有效地降低了材料的致密化温度 ,烧结机理为液相烧结。碱金属氧化物Na2 O虽然能够有效降低材料的烧结温度 ,但会破坏硅灰石晶体结构 ,引起材料微波性能显著降低。通过实验 ,制备出了具有优良微波介电性能的陶瓷材料 ,适用于LTCC基板及滤波器等高频微波器件的生产  相似文献   

17.
(1-x)Ba(Mg1/3Nb2/3)O3-xBaSnO3陶瓷的微波介电性能   总被引:1,自引:0,他引:1  
用传统陶瓷制备方法制备了(1-x)Ba(Mg1/3Nb2/3)O3-xBaSnO3[0.0≤x≤0.3,(1-x)BMN-xBS]体系微波介质陶瓷,研究了该陶瓷的微观结构和微波介电性能.用X射线衍射仪研究陶瓷的晶体结构.用扫描电镜观察陶瓷的显微结构.用网络分析仪测试陶瓷的微波介电性能.结果表明:晶格常数c和a均随x值的增加而增加;晶格常数比(c/a)随x值的增加而减小.当x≥0.1时,1∶2有序衍射峰消失.陶瓷的平均晶粒尺寸在0.7~2 μm之间.随x值的增加,陶瓷的相对介电常数(εr)和谐振频率温度系数(τr)呈线性减小;品质因数与谐振频率的乘积(Qf)呈非线性变化.当x=0.15时,Qf达到最大值,为86 200 GHz.当x=0.3时,在此体系中可以获得τf接近零的微波介质陶瓷Ba(Sn0.3Mg0.233Nb0.467)O3,其微波介电性能如下:εr=26.1;Qf=42 500GHz;τr=4.3×10-6/℃.  相似文献   

18.
研究了Ti-B位置换改性Mg2SiO4陶瓷微结构和微波介电性能.结果表明;在合成Mg2SiO4陶瓷过程中,Mg2SiO3总是作为第二相出现,Ti的引入能够有效地抑制Mg2SiO3的出现;但是,Ti不是进入Si-O四面体取代置换Si形成Mg2(Si1-xTix)O4固溶体,而是Mg与反应形成Mg2TiO4、Mg2Ti2O5等第二相.随着x值增加,Mg2(Si1-xTix)O4陶瓷的相对介电常数(εr)从6.8增加到8.1,机械品质因数与频率乘积(Q×f)也获得显著改善,但谐振频率温度系数(τf)不会因Ti引入而得到优化.在x=0.1时,Mg2(Si0.9Ti0.1)O4陶瓷获得最优的微波介电性能:εr=7.4,Q×f=73760GHz,τf=-6×10-6/℃.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号