首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insulin secretion from pancreatic beta cells is coupled to cell metabolism through closure of ATP-sensitive potassium (KATP) channels, which comprise Kir6.2 and sulfonylurea receptor (SUR1) subunits. Although metabolic regulation of KATP channel activity is believed to be mediated principally by the adenine nucleotides, other metabolic intermediates, including long chain acyl-CoA esters, may also be involved. We recorded macroscopic and single-channel currents from Xenopus oocytes expressing either Kir6.2/SUR1 or Kir6. 2DeltaC36 (which forms channels in the absence of SUR1). Oleoyl-CoA (1 microM) activated both wild-type Kir6.2/SUR1 and Kir6.2DeltaC36 macroscopic currents, approximately 2-fold, by increasing the number and open probability of Kir6.2/SUR1 and Kir6.2DeltaC36 channels. It was ineffective on the related Kir subunit Kir1.1a. Oleoyl-CoA also impaired channel inhibition by ATP, increasing the Ki values for both Kir6.2/SUR1 and Kir6.2DeltaC36 currents by approximately 3-fold. Our results indicate that activation of KATP channels by oleoyl-CoA results from an interaction with the Kir6.2 subunit, unlike the stimulatory effects of MgADP and diazoxide which are mediated through SUR1. The increased activity and reduced ATP sensitivity of KATP channels by oleoyl-CoA might contribute to the impaired insulin secretion observed in non-insulin-dependent diabetes mellitus.  相似文献   

2.
K+ channel modulation in arterial smooth muscle   总被引:1,自引:0,他引:1  
Potassium channels play an essential role in the membrane potential of arterial smooth muscle, and also in regulating contractile tone. Four types of K+ channel have been described in vascular smooth muscle: Voltage-activated K+ channels (Kv) are encoded by the Kv gene family, Ca(2+)-activated K+ channels (BKCa) are encoded by the slo gene, inward rectifiers (KIR) by Kir2.0, and ATP-sensitive K+ channels (KATP) by Kir6.0 and sulphonylurea receptor genes. In smooth muscle, the channel subunit genes reported to be expressed are: Kv1.0, Kv1.2, Kv1.4-1.6, Kv2.1, Kv9.3, Kv beta 1-beta 4, slo alpha and beta, Kir2.1, Kir6.2, and SUR1 and SUR2. Arterial K+ channels are modulated by physiological vasodilators, which increase K+ channel activity, and vasoconstrictors, which decrease it. Several vasodilators acting at receptors linked to cAMP-dependent protein kinase activate KATP channels. These include adenosine, calcitonin gene-related peptide, and beta-adrenoceptor agonists. beta-adrenoceptors can also activate BKCa and Kv channels. Several vasoconstrictors that activate protein kinase C inhibit KATP channels, and inhibition of BKCa and Kv channels through PKC has also been described. Activators of cGMP-dependent protein kinase, in particular NO, activate BKCa channels, and possibly KATP channels. Hypoxia leads to activation of KATP channels, and activation of BKCa channels has also been reported. Hypoxic pulmonary vasoconstriction involves inhibition of Kv channels. Vasodilation to increased external K+ involves KIR channels. Endothelium-derived hyperpolarizing factor activates K+ channels that are not yet clearly defined. Such K+ channel modulations, through their effects on membrane potential and contractile tone, make important contributions to the regulation of blood flow.  相似文献   

3.
1. The classical ATP sensitive K+ (K(ATP)) channels are composed of a sulphonylurea receptor (SUR) and an inward rectifying K+ channel subunit (BIR/Kir6.2). They are the targets of vasorelaxant agents called K+ channel openers, such as pinacidil and nicorandil. 2. In order to examine the tissue selectivity of pinacidil and nicorandil, in vitro, we compared the effects of these agents on cardiac type (SUR2A/Kir6.2) and vascular smooth muscle type (SUR2B/Kir6.2) of the K(ATP) channels heterologously expressed in HEK293T cells, a human embryonic kidney cell line, by using the patch-clamp method. 3. In the cell-attached recordings (145 mM K+ in the pipette), pinacidil and nicorandil activated a weakly inwardly-rectifying, glibenclamide-sensitive 80 pS K+ channel in both the transfected cells. 4. In the whole-cell configuration, pinacidil showed a similar potency in activating the SUR2B/Kir6.2 and SUR2A/Kir6.2 channels (EC50 of approximately 2 and approximately 10 microM, respectively). On the other hand, nicorandil activated the SUR2B/Kir6.2 channel > 100 times more potently than the SUR2A/Kir6.2 (EC50 of approximately 10 microM and > 500 microM, respectively). 5. Thus, nicorandil, but not pinacidil, preferentially activates the K(ATP) channels containing SUR2B. Because SUR2A and SUR2B are diverse only in 42 amino acids at their C-terminal ends, it is strongly suggested that this short part of SUR2B may play a critical role in the action of nicorandil on the vascular type classical K(ATP) channel.  相似文献   

4.
Structurally unique among ion channels, ATP-sensitive K+ (KATP) channels are essential in coupling cellular metabolism with membrane excitability, and their activity can be reconstituted by coexpression of an inwardly rectifying K+ channel, Kir6.2, with an ATP-binding cassette protein, SUR1. To determine if constitutive channel subunits form a physical complex, we developed antibodies to specifically label and immunoprecipitate Kir6.2. From a mixture of Kir6.2 and SUR1 in vitro-translated proteins, and from COS cells transfected with both channel subunits, the Kir6.2-specific antibody coimmunoprecipitated 38- and 140-kDa proteins corresponding to Kir6.2 and SUR1, respectively. Since previous reports suggest that the carboxy-truncated Kir6.2 can form a channel independent of SUR, we deleted 114 nucleotides from the carboxy terminus of the Kir6.2 open reading frame (Kir6.2deltaC37). Kir6.2deltaC37 still coimmunoprecipitated with SUR1, suggesting that the distal carboxy terminus of Kir6.2 is unnecessary for subunit association. Confocal microscopic images of COS cells transfected with Kir6.2 or Kir6.2deltaC37 and labeled with fluorescent antibodies revealed unique honeycomb patterns unlike the diffuse immunostaining observed when cells were cotransfected with Kir6.2-SUR1 or Kir6.2deltaC37-SUR1. Membrane patches excised from COS cells cotransfected with Kir6.2-SUR1 or Kir6.2deltaC37-SUR1 exhibited single-channel activity characteristic of pancreatic KATP channels. Kir6.2deltaC37 alone formed functional channels with single-channel conductance and intraburst kinetic properties similar to those of Kir6.2-SUR1 or Kir6.2deltaC37-SUR1 but with reduced burst duration. This study provides direct evidence that an inwardly rectifying K+ channel and an ATP-binding cassette protein physically associate, which affects the cellular distribution and kinetic behavior of a KATP channel.  相似文献   

5.
1. The purpose of these experiments was to determine whether or not the endothelium-dependent hyperpolarizations of the vascular smooth muscle cells (observed in the presence of inhibitors of nitric oxide synthase and cyclo-oxygenase) can be attributed to the production of an endogenous cannabinoid. 2. Membrane potential was recorded in the guinea-pig carotid, rat mesenteric and porcine coronary arteries by intracellular microelectrodes. 3. In the rat mesenteric artery, the cannabinoid receptor antagonist, SR 141716 (1 microM), did not modify either the resting membrane potential of smooth muscle cells or the endothelium-dependent hyperpolarization induced by acetylcholine (1 microM) (17.3 +/- 1.8 mV, n = 4 and 17.8 +/- 2.6 mV, n = 4, in control and presence of SR 141716, respectively). Anandamide (30 microM) induced a hyperpolarization of the smooth muscle cells (12.6 +/- 1.4 mV, n = 13 and 2.0 +/- 3.0 mV, n = 6 in vessels with and without endothelium, respectively) which could not be repeated in the same tissue, whereas acetylcholine was still able to hyperpolarize the preparation. The hyperpolarization induced by anandamide was not significantly influenced by SR 141716 (1 microM). HU-210 (30 microM), a synthetic CB1 receptor agonist, and palmitoylethanolamide (30 microM), a CB2 receptor agonist, did not influence the membrane potential of the vascular smooth muscle cells. 4. In the rat mesenteric artery, the endothelium-dependent hyperpolarization induced by acetylcholine (1 microM) (19.0 +/- 1.7 mV, n = 6) was not altered by glibenclamide (1 microM; 17.7 +/- 2.3 mV, n = 3). However, the combination of charybdotoxin (0.1 microM) plus apamin (0.5 microM) abolished the acetylcholine-induced hyperpolarization and under these conditions, acetylcholine evoked a depolarization (7.7 +/- 2.7 mV, n = 3). The hyperpolarization induced by anandamide (30 microM) (12.6 +/- 1.4 mV, n = 13) was significantly inhibited by glibenclamide (4.0 +/- 0.4 mV, n = 4) but not significantly affected by the combination of charybdotoxin plus apamin (17.3 +/- 2.3 mV, n = 4). 5. In the guinea-pig carotid artery, acetylcholine (1 microM) evoked endothelium-dependent hyperpolarization (18.8 +/- 0.7 mV, n = 15). SR 141716 (10 nM to 10 microM), caused a direct, concentration-dependent hyperpolarization (up to 10 mV at 10 microM) and a significant inhibition of the acetylcholine-induced hyperpolarization. Anandamide (0.1 to 3 microM) did not influence the membrane potential. At a concentration of 30 microM, the cannabinoid agonist induced a non-reproducible hyperpolarization (5.6 +/- 1.3 mV, n = 10) with a slow onset. SR 141716 (1 microM) did not affect the hyperpolarization induced by 30 microM anandamide (5.3 +/- 1.5 mV, n = 3). 6. In the porcine coronary artery, anandamide up to 30 microM did not hyperpolarize or relax the smooth muscle cells. The endothelium-dependent hyperpolarization and relaxation induced by bradykinin were not influenced by SR 141716 (1 microM). 7. These results indicate that the endothelium-dependent hyperpolarizations, observed in the guinea-pig carotid, rat mesenteric and porcine coronary arteries, are not related to the activation of cannabinoid CB1 receptors.  相似文献   

6.
Sulfonylureas stimulate insulin secretion from pancreatic beta-cells by closing ATP-sensitive K+ (K(ATP)). The beta-cell and cardiac muscle K(ATP) channels have recently been cloned and shown to possess a common pore-forming subunit (Kir6.2) but different sulfonylurea receptor subunits (SUR1 and SUR2A, respectively). We examined the mechanism underlying the tissue specificity of the sulfonylureas tolbutamide and glibenclamide, and the benzamido-derivative meglitinide, using cloned beta-cell (Kir6.2/SUR1) and cardiac (Kir6.2/SUR2A) K(ATP) channels expressed in Xenopus oocytes. Tolbutamide inhibited Kir6.2/SUR1 (Ki approximately 5 micromol/l), but not Kir6.2/SUR2A, currents with high affinity. Meglitinide produced high-affinity inhibition of both Kir6.2/SUR1 and Kir6.2/SUR2A currents (Kis approximately 0.3 micromol/l and approximately 0.5 micromol/l, respectively). Glibenclamide also blocked Kir6.2/SUR1 and Kir6.2/SUR2A currents with high affinity (Kis approximately 4 nmol/l and approximately 27 nmol/l, respectively); however, only for cardiac-type K(ATP) channels was this block reversible. Physiological concentrations of MgADP (100 micromol/l) enhanced glibenclamide inhibition of Kir6.2/SUR1 currents but reduced that of Kir6.2/SUR2A currents. The results suggest that SUR1 may possess separate high-affinity binding sites for sulfonylurea and benzamido groups. SUR2A, however, either does not possess a binding site for the sulfonylurea group or is unable to translate the binding at this site into channel inhibition. Although MgADP reduces the inhibitory effect of glibenclamide on cardiac-type K(ATP) channels, drugs that bind to the common benzamido site have the potential to cause side effects on the heart.  相似文献   

7.
The ATP-sensitive potassium (KATP) channels in pancreatic beta cells are critical in the regulation of glucose-induced insulin secretion. Although electrophysiological studies provide clues to the complex control of KATP channels by ATP, MgADP, and pharmacological agents, the molecular mechanism of KATP-channel regulation remains unclear. The KATP channel is a heterooligomeric complex of SUR1 subunits of the ATP-binding-cassette superfamily with two nucleotide-binding folds (NBF1 and NBF2) and the pore-forming Kir6.2 subunits. Here, we report that MgATP and MgADP, but not the Mg salt of gamma-thio-ATP, stabilize the binding of prebound 8-azido-[alpha-32P]ATP to SUR1. Mutation in the Walker A and B motifs of NBF2 of SUR1 abolished this stabilizing effect of MgADP. These results suggest that SUR1 binds 8-azido-ATP strongly at NBF1 and that MgADP, either by direct binding to NBF2 or by hydrolysis of bound MgATP at NBF2, stabilizes prebound 8-azido-ATP binding at NBF1. The sulfonylurea glibenclamide caused release of prebound 8-azido-[alpha-32P]ATP from SUR1 in the presence of MgADP or MgATP in a concentration-dependent manner. This direct biochemical evidence of cooperative interaction in nucleotide binding of the two NBFs of SUR1 suggests that glibenclamide both blocks this cooperative binding of ATP and MgADP and, in cooperation with the MgADP bound at NBF2, causes ATP to be released from NBF1.  相似文献   

8.
A cDNA clone encoding an inwardly-rectifying potassium channel subunit (Kir6.2) was isolated from an insulinoma cDNA library. The mRNA is strongly expressed in brain, skeletal muscle, cardiac muscle and in insulinoma cells, weakly expressed in lung and kidney and not detectable in spleen, liver or testis. Heterologous expression of Kir6.2 in HEK293 cells was only observed when the cDNA was cotransfected with that of the sulphonylurea receptor (SUR). Whole-cell Kir6.2/SUR currents were K(+)-selective, time-independent and showed weak inward rectification. They were blocked by external barium (5 mM), tolbutamide (Kd = 4.5 microM) or quinine (20 microM) and by 5 mM intracellular ATP. The single-channel conductance was 73 pS. Single-channel activity was voltage-independent and was blocked by 1 mM intracellular ATP or 0.5 mM tolbutamide. We conclude that the Kir6.2/SUR channel complex comprises the ATP-sensitive K-channel.  相似文献   

9.
We studied the effects of oxygen free radicals on the ATP-sensitive potassium channel (KATP channel) of guinea-pig ventricular myocytes. Single KATP channel currents were recorded from inside-out patches in the presence of symmetrical K+ concentrations (140 mM in both bath and pipette solutions). Reaction of xanthine oxidase (0.1 U/ml) on hypoxanthine (0.5 mM) produced superoxide anions (.O2-) and hydrogen peroxide (H2O2). Exposure of the patch membrane to.O2- and H2O2 increased the opening of KATP channels, but this activation was prevented by adding 1 microM glibenclamide to the bath solution. In the presence of ferric iron (Fe3+: 0.1 mM), the same procedure produced hydroxyl radicals (.OH) via the iron-catalysed Haber-Weiss reaction.OH also activated KATP channels; however, this activation could not be prevented by, even very high concentrations of glibenclamide (10 microM). These different effects of glibenclamide suggest that the mode of action of these oxygen free radicals on KATP channels is different and that.OH is more potent than.O2-/H2O2 in activating KATP channels in the heart.  相似文献   

10.
KATP channels are unique in requiring two distinct subunits (Kir6.2, a potassium channel subunit) and SUR1 (an ABC protein) for generation of functional channels. To examine the cellular trafficking of KATP channel subunits, green fluorescent protein (GFP) was tagged to the cytoplasmic N or C terminus of SUR1 and Kir6. 2 subunits and to the C terminus of a dimeric fusion between SUR1 and Kir6.2 (SUR1-Kir6.2). All tagged constructs generated functional channels with essentially normal properties when coexpressed with the relevant other subunit. GFP-tagged Kir6.2 (Kir6.2-GFP) showed perinuclear and plasma membrane fluorescence patterns when expressed alone or with SUR1, and a very similar pattern was observed when channel-forming SUR1-Kir6.2-GFP was expressed on its own. In contrast, whereas SUR1 (SUR1-GFP) also showed a perinuclear and plasma membrane fluorescence pattern when expressed alone, an apparently cytoplasmic fluorescence was observed when coexpressed with Kir6.2 subunits. The results indicate that Kir6.2 subunits traffic to the plasma membrane in the presence or absence of SUR1, in contradiction to the hypothesis that homomeric Kir6.2 channels are not observed because SUR1 is required as a chaperone to guide Kir6.2 subunits through the secretory pathway.  相似文献   

11.
ATP-sensitive potassium (KATP) channels in the pancreatic beta cell membrane mediate insulin release in response to elevation of plasma glucose levels. They are open at rest but close in response to glucose metabolism, producing a depolarization that stimulates Ca2+ influx and exocytosis. Metabolic regulation of KATP channel activity currently is believed to be mediated by changes in the intracellular concentrations of ATP and MgADP, which inhibit and activate the channel, respectively. The beta cell KATP channel is a complex of four Kir6.2 pore-forming subunits and four SUR1 regulatory subunits: Kir6.2 mediates channel inhibition by ATP, whereas the potentiatory action of MgADP involves the nucleotide-binding domains (NBDs) of SUR1. We show here that MgATP (like MgADP) is able to stimulate KATP channel activity, but that this effect normally is masked by the potent inhibitory effect of the nucleotide. Mg2+ caused an apparent reduction in the inhibitory action of ATP on wild-type KATP channels, and MgATP actually activated KATP channels containing a mutation in the Kir6.2 subunit that impairs nucleotide inhibition (R50G). Both of these effects were abolished when mutations were made in the NBDs of SUR1 that are predicted to abolish MgATP binding and/or hydrolysis (D853N, D1505N, K719A, or K1384M). These results suggest that, like MgADP, MgATP stimulates KATP channel activity by interaction with the NBDs of SUR1. Further support for this idea is that the ATP sensitivity of a truncated form of Kir6.2, which shows functional expression in the absence of SUR1, is unaffected by Mg2+.  相似文献   

12.
Cardiac ATP-sensitive K+ (KATP) channels (SUR2A plus Kir6.2) couple the metabolic state of the myocyte to its electrical activity via a mechanism that is not well understood. Recent pharmacological evidence suggests that KATP channels may mediate ischemic preconditioning. However, there is no potent pharmaceutical agent that specifically blocks the sarcolemmal KATP channel without significant effects on other cellular proteins. As a molecular tool, the GFG sequence in the H5 loop of the murine Kir6.2 channel was mutated to AFA. This mutated channel subunit (6.2AFA) suppressed wild-type Kir6.2 (6.2WT) channel current in a dominant-negative manner: when co-expressed with SUR2A and 6.2WT, whole-cell KATP current recorded from HEK cells was greatly attenuated. The 6.2AFA subunit also co-assembled with endogenous subunits in both smooth-muscle-derived A10 cells and rat neonatal ventricular myocytes, resulting in a significant reduction of current compared with that recorded from non-transfected or mock-transfected cells (<15% of control for both cell types). This study shows that mutation of GFG-->AFA in the putative pore-forming region of Kir6.2 acts in a dominant-negative manner to suppress current in heterologous systems and in native cells.  相似文献   

13.
In response to oxygen deprivation, CA1 pyramidal neurons show a hyperpolarization (hypoxic hyperpolarization), which is associated with a reduction in neuronal input resistance. The role of extra- and intracellular Ca2+ ions in hypoxic hyperpolarization was investigated. The hypoxic hyperpolarization was significantly depressed by tolbutamide (100 microM); moreover, the response was reversed in its polarity in medium containing tolbutamide (100 microM), low Ca2+ (0.25 mM), and Co2+ (2 mM), suggesting that the hypoxic hyperpolarization is mediated by activation of both ATP-sensitive K+ (KATP) channels and Ca(2+)-dependent K+ channels. The hypoxic depolarization in medium containing tolbutamide, low Ca2+, and Co2+ is probably due to inhibition of the electrogenic Na(+)-K+ pump and concomitant accumulation of interstitial K+. Hypoxic hyperpolarizations were depressed in either low Ca2+ (0.25 or 1.25 mM) or high Ca2+ (5 or 7.5 mM) medium (control: 2.5 mM), indicating that there is an optimal extracellular Ca2+ concentration required to produce the hypoxic hyperpolarization. Bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA)-AM (50-100 microM), procaine (300 microM), or ryanodine (10 microM) significantly depressed the hypoxic hyperpolarization, suggesting that Ca2+ released from intracellular Ca+ stores may have an important role in the generation of hypoxic hyperpolarization. The high-affinity calmodulin inhibitor N-(6-amino-hexyl)-5-chloro-1-naphthalenesulfonomide hydrochloride (W-7) (5 microM) completely blocked, whereas the low-affinity calmodulin inhibitor N-(6-aminohexyl)-1-naphthalenesulfonomide hydrochloride (W-5) (50 microM) did not affect, the hypoxic hyperpolarization. The calmodulin inhibitor trifluoperazine (50 microM) also suppressed the hypoxic hyperpolarization. In addition, calcium/ calmodulin kinase II inhibitor 1-[N,O-bis (1,5-isoquinol-inesulfonyl)-N-methyl-L-tyrosyl]-4-phenyl-pip erazine (KN-62) (10 microM) markedly depressed the amplitude and net outward current of the hypoxic hyperpolarization without affecting the reversal potential. In contrast, neither the myosin light chain kinase inhibitor 1-(5-iodonaphthalene-1-sulfonyl)-1H-hexa-hydro-1,4-diazepin hydrochloride (ML-7) (10 microM) nor the protein kinase A inhibitor N-[2-(p-bromocinnamyl-amino) ethyl]-5-isoquinolinesulfonamide (H-89) (1 microM) significantly altered the hypoxic hyperpolarization. These results suggest that calmodulin kinase II, which is activated by calmodulin, may contribute to the generation of the hypoxic hyperpolarization. In conclusion, the present study indicates that, in the majority of hippocampal CA1 neurons, the hypoxic hyperpolarization is due to activation of both KATP channels and Ca(2+)-dependent K+ channels.  相似文献   

14.
Strophanthidin inhibits KATP channels in 2,4-dinitrophenol-poisoned heart cells (). The current study shows that the Na/K pump interacts with KATP current (IK-ATP) via submembrane ATP depletion in isolated giant membrane patches and in nonpoisoned guinea pig cardiac cells in whole-cell configuration. IK-ATP was inhibited by ATP, glibenclamide, or intracellular Cs+. Na/K pump inactivation by substitution of cytoplasmic Na+ for Li+ or N-methylglucamine decreased both IK-ATP by 1/3 (1 mM ATP, zero calcium), and IC50 of ATP for IK-ATP (0.3 +/- 0.1 mM) by 2/5. The Na+/Li+ replacement had no effect on IK-ATP at low pump activity ([ATP] 相似文献   

15.
Unique ATP-inhibitable K+ channels (KATP) in the kidney determine the rate of urinary K+ excretion and play an essential role in extracellular K+ balance. Here, we demonstrate that functionally similar low sulfonylurea affinity KATP channels are formed by two heterologous molecules, products of Kir1.1a and cystic fibrosis transmembrane conductance regulator (CFTR) genes. Co-injection of CFTR and Kir1.1a cRNA into Xenopus oocytes lead to the expression of K+ selective channels that retained the high open probability behavior of Kir1.1a but acquired sulfonylurea sensitivity and ATP-dependent gating properties. Similar to the KATP channels in the kidney but different from KATP channels in excitable tissues, the Kir1.1a/CFTR channel was inhibited by glibenclamide with micromolar affinity. Since the expression of Kir1.1a and CFTR overlap at sites in the kidney where the low sulfonylurea affinity KATP are expressed, our study offers evidence that these native KATP channels are comprised of Kir1.1a and CFTR. The implication that Kir subunits can interact with ABC proteins beyond the subfamily of sulfonylurea receptors provides an intriguing explanation for functional diversity in KATP channels.  相似文献   

16.
The effects of the proteolytic enzyme trypsin upon ATP-sensitive potassium (KATP) channel activity were examined in the CRI-G1 insulin-secreting cell line. Trypsin activated channels only when applied to the intracellular surface of the cell membrane. The activation could be prevented by the concomitant application of trypsin inhibitor or by heat inactivation of the enzyme. The trypsin-induced change in channel activity was accompanied by a reduction in the rate of channel rundown. However, trypsin did not affect the mean single channel conductance (55.2 pS), the ionic selectivity, or rectification of the KATP channel. Concentration response curves for various KATP channel inhibitors were constructed in the presence and absence of intracellular trypsin. The EC50 for tolbutamide was shifted from 30.0 +/- 4.5 microM, with 100 micrograms/ml heat-inactivated trypsin present to 9.7 +/- 1.0 mM with active trypsin in the intracellular solution. Treatment of the cells' external surface with 1 mg/ml trypsin did not alter the potency of tolbutamide. Intracellular trypsin also produced a significant fall in the potency of glibenclamide, meglitinide, and phentolamine but did not alter the effectiveness of thiopentone. Radioligand binding studies demonstrated a total loss of 3H-labeled glibenclamide binding when the intracellular surface of the cells was exposed to trypsin. In contrast, 3H-labeled glibenclamide binding was not affected when the enzyme was applied to the external surface. Trypsin treatment, therefore, alters a number of characteristics of KATP channel pharmacology, and we suggest that this is due to action at possibly more than one site but includes the functional cleavage of the sulfonylurea receptor from the KATP channel.  相似文献   

17.
ATP-sensitive K+ (KATP) channels are both inhibited and activated by intracellular nucleotides, such as ATP and ADP. The inhibitory effects of nucleotides are mediated via the pore-forming subunit, Kir6.2, whereas the potentiatory effects are conferred by the sulfonylurea receptor subunit, SUR. The stimulatory action of Mg-nucleotides complicates analysis of nucleotide inhibition of Kir6. 2/SUR1 channels. We therefore used a truncated isoform of Kir6.2, that expresses ATP-sensitive channels in the absence of SUR1, to explore the mechanism of nucleotide inhibition. We found that Kir6.2 is highly selective for ATP, and that both the adenine moiety and the beta-phosphate contribute to specificity. We also identified several mutations that significantly reduce ATP inhibition. These are located in two distinct regions of Kir6.2: the N-terminus preceding, and the C-terminus immediately following, the transmembrane domains. Some mutations in the C-terminus also markedly increased the channel open probability, which may account for the decrease in apparent ATP sensitivity. Other mutations did not affect the single-channel kinetics, and may reduce ATP inhibition by interfering with ATP binding and/or the link between ATP binding and pore closure. Our results also implicate the proximal C-terminus in KATP channel gating.  相似文献   

18.
1. The characteristic features of the endothelium-mediated regulation of the electrical and mechanical activity of the smooth muscle cells of cerebral arteries were studied by measuring membrane potential and isometric force in endothelium-intact and -denuded strips taken from the rabbit middle cerebral artery (MCA). 2. In endothelium-intact strips, histamine (His, 3-10 microM) and high K+ (20-80 mM) concentration-dependently produced a transient contraction followed by a sustained contraction. Noradrenaline (10 microM), 5-hydroxytryptamine (10 microM) and 9,11-epithio-11, 12-methano-thromboxane A2 (10 nM) each produced only a small contraction (less than 5% of the maximum K+-induced contraction). 3. N(G)-nitro-L-arginine (L-NOARG, 100 microM), but not indomethacin (10 microM), greatly enhanced the phasic and the tonic contractions induced by His (1-10 microM) in endothelium-intact, but not in endothelium-denuded strips, suggesting that spontaneous or basal release of nitric oxide (NO) from endothelial cells potently attenuates the His-induced contractions. Acetylcholine (ACh, 0.3-3 microM) caused concentration-dependent relaxation (maximum relaxation by 89.7 +/- 7.5%, n=4, P<0.05) when applied to endothelium-intact strips precontracted with His. L-NOARG had little effect on this ACh-induced relaxation (n=4; P<0.05). Apamin (0.1 microM), but not glibenclamide (3 microM), abolished the relaxation induced by ACh (0.3-3 microM) in L-NOARG-treated strips (n=4, P<0.05). 4. In endothelium-intact tissues, His (3 microM) depolarized the smooth muscle membrane potential (by 4.4 +/- 1.8 mV, n = 12, P < 0.05) whereas ACh (3 microM) caused membrane hyperpolarization (-20.9 +/- 3.0 mV, n = 25, P< 0.05). The ACh-induced membrane hypepolarization persisted after application of L-NOARG (-23.5 +/- 5.9 mV, n=8, P<0.05) or glibenclamide (-20.6 +/- 5.4 mV, n=5, P<0.05) but was greatly diminished by apamin (reduced to - 5.8 +/- 3.2 mV, n = 3, P< 0.05). 5. Sodium nitroprusside (0.1-10 microM) did not hyperpolarize the smooth muscle cell membrane potential (0.2 +/- 0.3 mV, n=4, P>0.05) but it greatly attenuated the His-induced contraction in endothelium-denuded strips (n-4, P<0.05). 6. These results suggest that, under the present experimental conditions: (i) spontaneous or basal release of NO from endothelial cells exerts a significant negative effect on agonist-induced contractions in rabbit MCA, and (ii) ACh primarily activates the release of endothelium-derived hyperpolarizing factor (EDHF) in rabbit MCA.  相似文献   

19.
This study tests the hypothesis that glycolytic regulation of KATP channel activity is altered in myocardial hypertrophy. Left ventricular (LV) subendocardial myocytes were isolated from cats with normal or left ventricular hypertrophied hearts (LVH). Saponin-permeabilized open cell-attached patch configurations of normal and LVH cells were exposed to an exogenous ATP consuming system containing hexokinase and 2-deoxyglucose. Phosphoenol pyruvate (PEP, substrate for the last ATP producing step in glycolysis) was applied extracellularly; ADP was present. In both cell types, KATP channels were activated in the absence of PEP, inhibited when PEP was added and activated again when PEP was removed, indicating the cells retained metabolic integrity and generated ATP in the proximity of their KATP channels. Single channel conductance in the absence of PEP was similar (70 pS, normal; 66 pS, LVH). However, LVH KATP channels showed enhanced activity (P0=0.50+/-0.03); normal (0.41+/-0.03) in PEP absence (P<0. 05). PEP responsiveness was reduced in LVH, with IC50, PEP increased to 23 microM; (11 microM normal). Lactate failed to activate KATP channels in both cell types. The concentration-P0 response curves obtained during exposure of open cells to exogenous ATP also revealed reduced responsiveness to ATP of LVH KATP channels (IC50, ATP=283 microM LVH; 93 microM normal). Our data indicate myocardial hypertrophy increases the maximal activity of KATP channels in the absence of ATP and reduces their responsiveness to ATP, including locally generated glycolytic ATP. These alterations in metabolic regulation of myocardial electrophysiology may contribute to diversity of action potential shortening in hypertrophied hearts during acute ischemia.  相似文献   

20.
We evaluated the acute effects of ibuprofen and salicylic acid on cAMP-mediated Cl- secretion (Isc) in both colonic and airway epithelia. In T84 cells, ibuprofen inhibited the forskolin-dependent Isc in a concentration-dependent manner, having an apparent Ki of 142 microM. Salicylic acid inhibited Isc with an apparent Ki of 646 microM. We determined whether ibuprofen would also inhibit the forskolin-stimulated Isc in primary cultures of mouse trachea epithelia (MTE) and human bronchial epithelia (HBE). Similar to our results in T84 cells, ibuprofen (500 microM) inhibited the forskolin-induced Isc in MTEs and HBEs by 59+/-4% (n = 11) and 39+/-6% (n = 8), respectively. Nystatin was employed to selectively permeabilize the basolateral or apical membrane to determine the effect of ibuprofen on apical Cl- (ICl) and basolateral K+ (IK) currents after stimulation by forskolin. After forskolin stimulation, ibuprofen (500 microM) reduced both the ICl and IK; reducing ICl and IK by 60 and 15%, respectively. To determine whether this inhibition of ICl was due to the inhibition of CFTR, the effects of ibuprofen and salicylic acid on CFTR Cl- channels in excised, inside-out patches from L-cells were evaluated. Ibuprofen (300 microM) reduced CFTR Cl- current by 60+/-16% and this was explained by a short-lived block (approximately 1.2 ms) which causes an apparent reduction in single channel amplitude from 1.07+/-0.04 pA to 0.59+/-0.04 pA (n = 3). Similarly, salicylic acid (3 mM) reduced CFTR Cl- current by 50+/-8% with an apparent reduction in single channel amplitude from 1.08+/-0.03 pA to 0.48+/-0.06 pA (n = 4). Based on these results, we conclude that the NSAIDs ibuprofen and salicylic acid inhibit cAMP-mediated Cl- secretion in human colonic and airway epithelia via a direct inhibition of CFTR Cl- channels as well as basolateral membrane K+ channels. This may reduce their efficacy in conjunction with other therapeutic strategies designed to increase CFTR expression and/or function in secretory epithelia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号