首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elevation of intracranial pressure is one of the most important issues in neurosurgery and neurology in clinical practice. The prevalent techniques for measuring intracranial pressure require equipments that are wired, restricted to a hospital environment, and cause patient discomfort. A novel method for measuring the intracranial pressure is described. A wireless completely implantable device, operating at an industrial-scientific-medical band of 2.4 GHz, has been developed and tested. In-vitro and in-vivo evaluations are described to demonstrate the feasibility of microwave pressure monitoring through scalp, device integrity over a long period of time, and repeatability of pressure measurements. A distinction between an epidural and sub-dural pressure monitoring techniques is also described. Histo-pathological results obtained upon a long-term device implantation favor the utilization of the sub-dural pressure monitoring method. On the other hand, in-vivo studies illustrate a maximum pressure reading error of 0.8 mm middot Hg obtained for a sub-dural device with a capacitive microelectromechanical system sensor compared to 2 mm middot Hg obtained for an epidural device with a piezoresistive sensor.  相似文献   

2.
This paper deals with the control of pulsewidth modulation inverters connected to the grid through resonant LCL filters. It proposes two alternative (piecewise affine) models that account for the switched behavior of the converter. Based on these improved models, an explicit model-predictive control scheme is derived in order to provide a fast response, making it very suitable for applications, such as active filtering, where a large bandwidth is required. A state observer and a grid voltage estimator are used in order to reduce the number of required sensors and to eliminate noise. The control scheme relies only on filtered current measurements and on the dc voltage.   相似文献   

3.
This paper presents the 25-DOF full-size humanoid robot LOLA . Our goal is to realize fast and human-like walking. Furthermore, we want to increase the robot’s autonomous, vision-guided walking capabilities. LOLA is characterized by a redundant kinematic configuration, an extremely lightweight design, joint actuators with brushless motors and an electronics architecture using decentralized joint control. Special emphasis was put on an improved mass distribution to achieve good dynamic performance. Center of mass trajectories are calculated in real-time from footstep locations using a spline collocation method. Reference trajectories are modified by a stabilizing control system based on hybrid force/position control with an inner joint position control loop.   相似文献   

4.
This paper describes the design and implementation of a discrete controller for grid-connected voltage-source inverters with an LCL filter usually found in wind power generation systems. First, a theorem that relates the controllability of the discrete dynamic equation of the inverter with LCL filter and the sampling frequency is derived. Then, a condition to obtain a partial state feedback controller robust to grid impedance uncertainties and based on linear matrix inequalities is proposed. This controller guarantees the stability and damping of the LCL filter resonance for a large set of grid conditions without requiring self-tuning procedures. Finally, an internal model controller is added to ensure asymptotic reference tracking and disturbance rejection, significantly reducing the impact of grid background voltage distortion on the output currents. Experimental results are presented to support the theoretical analysis and to demonstrate the system performance.   相似文献   

5.
We propose a circuit technique that enables the realization of widely programmable high-frequency active RC filters in CMOS technology. A fifth-order Chebyshev ladder filter having a digitally programmable 3-dB bandwidth (from 44 to 300 MHz) is used as a vehicle to validate our ideas. The opamp uses feedforward compensation for achieving high dc gain and wide bandwidth. The integrating resistors are realized as a series combination of a triode-operated MOSFET and a fixed polysilicon resistor. A charge-pump-based servo loop servoes the integrating resistor to a stable off-chip resistor. The principle of “constant capacitance scaling” is applied to the opamp and the integrating resistors so that the shape of the frequency response is maintained when the bandwidth is scaled over a 7 $times$ range. The filter core, designed in a 0.18-${rm mu}hbox{m}$ CMOS process, consumes 54 mW from 1.8-V supply and has a dynamic range of 56.6 dB.   相似文献   

6.
Cryoablation is a widely used method for the treatment of nonresectable primary and metastatic liver tumors. A model that can accurately predict the size of a cryolesion may allow more effective treatment of tumor, while sparing normal liver tissue. We generated a computer model of tissue cryoablation using the finite-element method (FEM). In our model, we considered the heat transfer mechanism inside the cryoprobe and also cryoprobe surfaces so our model could incorporate the effect of heat transfer along the cryoprobe from the environment at room temperature. The modeling of the phase shift from liquid to solid was a key factor in the accurate development of this model. The model was verified initially in an ex vivo liver model. Temperature history at three locations around one cryoprobe and between two cryoprobes was measured. The comparison between the ex vivo result and the FEM modeling result at each location showed a good match, where the maximum difference was within the error range acquired in the experiment (< 5 degC). The FEM model prediction of the lesion size was within 0.7 mm of experimental results. We then validated our FEM in an in vivo experimental porcine model. We considered blood perfusion in conjunction with blood viscosity depending on temperature. The in vivo iceball size was smaller than the ex vivo iceball size due to blood perfusion as predicted in our model. The FEM results predicted this size within 0.1-mm error. The FEM model we report can accurately predict the extent of cryoablation in the liver.  相似文献   

7.
Metal-insulator field-effect transistors (FETs) are fabricated using a single n-InAs nanowire (NW) with a diameter of d = 50 nm as a channel and a silicon nitride gate dielectric. The gate length and dielectric scaling behavior is experimentally studied by means of dc output- and transfer-characteristics and is modeled using the long-channel MOSFET equations. The device properties are studied for an insulating layer thickness of 20-90 nm, while the gate length is varied from 1 to 5 mum. The InAs NW FETs exhibit an excellent saturation behavior and best breakdown voltage values of V BR > 3 V. The channel current divided by diameter d of an NW reaches 3 A/mm. A maximum normalized transconductance gm /d > 2 S/mm at room temperature is routinely measured for devices with a gate length of les 2 mum and a gate dielectric layer thickness of les 30 nm.  相似文献   

8.
This paper proposes to merge an I/Q current-commutating mixer with a noise-canceling balun-LNA. To realize a high bandwidth, the real part of the impedance of all RF nodes is kept low, and the voltage gain is not created at RF but in baseband where capacitive loading is no problem. Thus a high RF bandwidth is achieved without using inductors for bandwidth extension. By using an I/Q mixer with 25% duty-cycle LO waveform the output IF currents have also 25% duty-cycle, causing 2 times smaller DC-voltage drop after IF filtering. This allows for a 2 times increase in the impedance level of the IF filter, rendering more voltage gain for the same supply headroom. The implemented balun-LNA-I/Q-mixer topology achieves $> ,$18 dB conversion gain, a flat noise figure $≪, $5.5 dB from 500 MHz to 7 GHz, IIP2$ ={+}$20 dBm and IIP3 $={-}$3 dBm. The core circuit consumes only 16 mW from a 1.2 V supply voltage and occupies less than ${hbox{0.01~mm}}^{2}$ in 65 nm CMOS.   相似文献   

9.
Variable-frequency microwave (VFM) curing can perform the same processing steps as conventional thermal processing in minutes, without compromising intrinsic material properties. With increasing demand for novel dielectrics, there is a corresponding demand for new processing techniques that lead to comparable or better properties than conventional methods. VFM processing can be a viable alternative to conventional thermal techniques. However, current limitations include a lack of reliable temperature measuring techniques. This research focuses on developing a reliable temperature measuring system using acoustic techniques to monitor low-k polymer dielectrics cured on silicon wafers in a VFM furnace. The acoustic sensor exhibits the capability to measure temperatures from 20degC to 300degC with an attainable accuracy of plusmn2 degrees.  相似文献   

10.
A self-switched biasing quadrature voltage-controlled oscillator (VCO) is presented. It is implemented by directly injecting the oscillation signal of one VCO core into the other VCO core through the divided tail current sources without additional active devices for coupling. The proposed coupling structure automatically switches the NMOS field-effect transistors used in VCO cores and current sources from strong inversion to accumulation. Since the deep switching of MOSFETs was reported to physically reduce flicker noise, the proposed quadrature VCO (QVCO) is expected to improve the phase noise performance, which is confirmed experimentally. The designed QVCO using 0.18- $mu{hbox{m}}$ CMOS technology operates from 1.86 to 2.2 GHz with a 17% frequency tuning range. The measured phase noise is from $-$ 129.1 to $-$ 134.5 dBc/Hz at a 1-MHz offset, which is really close to ideal simulation results with the NMOS model disabling the flicker noise components. The average measured phase noise is 7.2 dB below the simulated one with a flicker noise model, which verifies the physical reduction of flicker noise by deep switching of the MOSFET. The phase noise figure-of-merit ranges from 179 to 185 over the entire tuning range. The QVCO dissipates 20 mA from a 1.8-V supply.   相似文献   

11.
In this letter, for the first time, we have successfully fabricated silicon-oxide-nitride-oxide-silicon (SONOS) devices with embedded silicon nanocrystals (Si-NCs) in silicon nitride using in situ method. This process is simple and compatible to modern IC processes. Different Si-NCs deposition times by in situ method were investigated at first. SONOS devices with embedded Si-NCs in silicon nitride exhibit excellent characteristics in terms of larger memory windows (> 5.5 V), lower operation voltage, high P/E speed, and longer retention time (> 108 s for 13% charge loss).  相似文献   

12.
The link quality of mobile phones suffers from antenna mismatch due to fluctuating body effects. Techniques for adaptive control of impedance-matching L networks are presented, which provide automatic compensation of antenna mismatch. To secure reliable convergence, a cascade of two control loops is proposed for independent control of the real and imaginary parts of impedance. A secondary feedback path is used to enforce operation into a stable region when needed. These techniques exploit the basic properties of tunable series and parallel LC networks. A generic quadrature detector that offers a power-independent orthogonal reading of the complex impedance value is presented, which is used for direct control of variable capacitors. This approach renders calibration and elaborate software computation superfluous and allows for autonomous operation of adaptive antenna-matching modules.   相似文献   

13.
AlGaN/GaN high-electron-mobility transistors (HEMTs) with indium tin oxide (ITO) transparent gate electrodes have been fabricated. The transparent gate electrodes enable the investigation of photon, electron, and phonon behaviors in active regions in HEMTs using optical characterizations such as electroluminescence, photoluminescence, and Raman spectroscopy technologies. Leakage current, on/off ratio, and transparency have been compared for transistors using Ni/Au/Ni, ITO, and Ni/ITO stacks as gate electrodes. Compared to the Ni/Au/Ni gate transistor, the ITO gate device shows a comparable current gain cutoff frequency (f T) but a much lower power gain cutoff frequency (f max) due to the low conductivity of ITO.  相似文献   

14.
In addition to its technical merits as a challenging nonrigid motion and structural integrity analysis problem, quantitative estimation of cardiac regional functions and material characteristics has significant physiological and clinical value. We developed a stochastic finite-element framework for the simultaneous recovery of myocardial motion and material parameters from medical image sequences with an extended Kalman filter approach, and we have shown that this simultaneous estimation strategy achieves more accurate and robust results than separated motion and material estimation efforts. In this paper, we present a new computational strategy for the framework based upon the maximum a posteriori estimation principles, realized through the extended Kalman smoother, that produces a sequence of kinematics state and material parameter estimation of the entire myocardium, including the endocardial, epicardial, and midwall tissues. The system dynamics equations of the heart are constructed using a biomechanical model with stochastic parameters, and the tissue material and deformation parameters are jointly estimated from the periodic imaging data. Noise-corrupted synthetic image sequences with known kinematics and material parameters are used to assess the accuracy and robustness of the framework. Experiments with canine magnetic resonance tagging and phase-contrast image sequences have been conducted with very promising results, as validated through comparison to the histological staining of postmortem myocardium.  相似文献   

15.
The nematode Caenorhabditis elegans (C. elegans) is a genetic model widely used to dissect conserved basic biological mechanisms of development and nervous system function. C. elegans locomotion is under complex neuronal regulation and is impacted by genetic and environmental factors; thus, its analysis is expected to shed light on how genetic, environmental, and pathophysiological processes control behavior. To date, computer-based approaches have been used for analysis of C. elegans locomotion; however, none of these is both high resolution and high throughput. We used computer vision methods to develop a novel automated approach for analyzing the C. elegans locomotion. Our method provides information on the position, trajectory, and body shape during locomotion and is designed to efficiently track multiple animals (C. elegans) in cluttered images and under lighting variations. We used this method to describe in detail C. elegans movement in liquid for the first time and to analyze six unc-8, one mec-4, and one odr-1 mutants. We report features of nematode swimming not previously noted and show that our method detects differences in the swimming profile of mutants that appear at first glance similar.  相似文献   

16.
A pseudo-exponential capacitor bank structure is proposed to implement a wide-band CMOS LC voltage-controlled oscillator (VCO) with linearized coarse tuning characteristics. An octave bandwidth VCO employing the proposed 6-bit pseudo-exponential capacitor bank structure has been realized in 0.18-mum CMOS. Compared to a conventional VCO employing a binary weighted capacitor bank, the proposed VCO has considerably reduced the variations of the VCO gain (K VCO) and the frequency step per a capacitor bank code (f step/code) by 2.7 and 2.1 times, respectively, across the tuning range of 924-1850 MHz. Measurement results have also shown that the VCO provides the phase noise of - 127.1 dBc/Hz at 1-MHz offset for 1.752-GHz output frequency while dissipating 6 mA from a 1.8-V supply.  相似文献   

17.
We demonstrate a reflectivity-based cerebral blood volume sensor comprised of surface-mount light-emitting diodes on a flexible substrate with integrated photodetectors in a form factor suitable for direct brain contact and chronic implantation. This reflectivity monitor is able to measure blood flow through the change of the surface reflectivity and, through this mechanism, detect the cerebral-blood-volume changes associated with epileptic seizures with a signal-to-noise (SNR) response of 42 dB. The device is tested in an in vivo model confirming its compatibility and sensitivity. The data taken demonstrate that placing the sensor into direct brain contact improves the SNR by more than four orders of magnitude over current noncontact technologies.  相似文献   

18.
For a wireless network with n nodes distributed in an area A, and with n source-destination pairs communicating with each other at some common rate, the hierarchical cooperation scheme proposed in (Ozgur, Leveque, and Tse, 2007) is analyzed and optimized by choosing the number of hierarchical stages and the corresponding cluster sizes that maximize the total throughput. It turns out that increasing the number of stages does not necessarily improve the throughput, and the closed-form solutions for the optimization problem can be explicitly obtained. Based on the expression of the maximum achievable throughput, it is found that the hierarchical scheme achieves a scaling with the exponent depending on n . In addition, to apply the hierarchical cooperation scheme to random networks, a clustering algorithm is developed, which divides the whole network into quadrilateral clusters, each with exactly the number of nodes required.  相似文献   

19.
Thalamic relay cells express distinctive response modes based on the state of a low-threshold calcium channel (T-channel). When the channel is fully active (burst mode), the cell responds to inputs with a high-frequency burst of spikes; with the channel inactive ( tonic mode), the cell responds at a rate proportional to the input. Due to the T-channel's dynamics, we expect the cell's response to become more nonlinear as the channel becomes more active. To test this hypothesis, we study the response of an in silico relay cell to Poisson spike trains. We first validate our model cell by comparing its responses with in vitro responses. To characterize the model cell's nonlinearity, we calculate Poisson kernels, an approach akin to white noise analysis but using the randomness of Poisson input spikes instead of Gaussian white noise. We find that a relay cell with active T-channels requires at least a third-order system to achieve a characterization as good as a second-order system for a relay cell without T-channels.   相似文献   

20.
This paper proposes a novel synchronous rectifier (SR) driving scheme for resonant converters. It is very suitable for high-frequency, high-efficiency, and high-power-density dc–dc resonant converters with SRs. In this paper, an LLC resonant converter with the proposed synchronous rectification is designed and analyzed. With the proposed driving scheme, the SR body diode conduction is reduced to almost zero. The driving scheme eliminates the reverse-recovery problem of SRs. Both current and voltage stresses are greatly decreased, and the conduction loss and switching loss of SRs are also reduced considerably. The experimental results show that the proposed LLC resonant converter with SRs can achieve low stress, high efficiency, and high power density.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号