共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression of polysialylated neurons in the dentate gyrus of the hippocampal formation of young (postnatal day 40), mature (postnatal day 80) and aged (postnatal day 540) male Wistar rats has been investigated by immunohistochemical techniques employing a monoclonal antibody specific for neural cell adhesion molecule-linked alpha 2,8 polysialic acid. A strong immunoreactivity was found on the cell bodies, dendrites and axons of granule-like neuronal cells at the border between the hilar region and the granule cell layer of the young rat. In the mature animal the number of immunoreactive neurons declined dramatically and were virtually absent in the aged group. Using an alternative fixation procedure, glial fibrillary acidic protein-positive and polysialylated astroglia processes were found in close proximity to the dendrites of the polysialylated granule-like cells. The number of astroglial processes traversing the granule cell layer showed a similar age-dependent decline to that observed with the polysialylated neurons. Glial fibrillary acidic protein-positive and polysialylated stellate astroglia were present throughout the hippocampal formation, but did not show the marked age-dependent decline observed with the astroglial processes in the granule cell layer. The neuronal dendrites and astroglial processes exhibited a strict numerical ratio in the young and mature animal and, in double immunofluorescence studies with anti-polysialic acid and anti-glial fibrillary acidic protein, the astroglial processes exhibited apparent points of cell and/or dendritic contact. These findings suggest that loss of polysialylated astroglial processes precedes the decline in polysialylated dentate neurons. 相似文献
2.
Two toluene-sensitive mutants were generated from Pseudomonas putida IH-2000, the first known toluene-tolerant isolate, by Tn5 transposon mutagenesis. These mutants were unable to grow in the presence of toluene (log P(ow) 2.8) but they could grow in medium overlaid with organic solvents having a log P(ow) value higher than that of toluene such as p-xylene (log P(ow) 3.1), cyclohexane (log P(ow) 3.4) and n-hexane (log P(ow) 3.9). The Tn5 transposable element knocked out a cyoB-like gene in one mutant and a cyoC-like gene in the other mutant. Seven open reading frames were found in a 5.5-kb region containing the cyoB- and cyoC-like genes of strain IH-2000. ORFs 3.7 showed significant identity to the cyoABCDE gene products of Escherichia coli, but ORFs 1 and 2 showed no significant homology to any protein reported so far. The growth patterns of the Tn5 mutants with the inactivated cyo-like gene were similar to that of the wild-type strain in the absence of organic solvents, although the doubling times were slightly longer than that of the wild-type strain. Our findings indicate that cyo is an important gene for toluene tolerance, although its role is still unclear. 相似文献
3.
Sixteen phases in the microenvironments were defined for the structural development and innervation of the cochleo-vestibular ganglion and its targets. In each phase the cell adhesion molecules, neural cell adhesion molecule, neural cell adhesion molecule-polysialic acid, and L1-cell adhesion molecule, were expressed differentially by cochleo-vestibular ganglion cells, their precursors, and the target cells on which they synapse. Detected by immunocytochemistry in staged chicken embryos, in the otocyst, neural cell adhesion molecule, but not L1-cell adhesion molecule, was localized to the ganglion and hair cell precursors. Ganglionic precursors, migrating from the otocyst, only weakly expressed neural cell adhesion molecule. Epithelial hair cell precursors, remaining in the otocyst, expressed neural cell adhesion molecule, but not L1-cell adhesion molecule. Post-migratory ganglion cell processes expressed both molecules in all stages. The cell adhesion molecules were most heavily expressed by axons penetrating the otic epithelium and accumulated in large amounts in the basal lamina. In the basilar papilla (cochlea), cell adhesion molecule expression followed the innervation gradient. Neural cell adhesion molecule and L1 were heavily concentrated on axonal endings peripherally and centrally. In the rhombencephalon, primitive epithelial cells expressed neural cell adhesion molecule, but not L1-cell adhesion molecule, except in the floorplate. The neuroblasts and their axons expressed L1-cell adhesion molecule, but not neural cell adhesion molecule, when they began to migrate and form the dorsal commissure. There was a stage-dependent, differential distribution of the cell adhesion molecules in the floorplate. Commissural axons expressed both cell adhesion molecules, but their polysialic acid disappeared within the floorplate at later stages. In conclusion, the cell adhesion molecules are expressed by the same cells at different times and places during their development. They are positioned to play different roles in migration, target penetration, and synapse formation by sensory neurons. A multiphasic model provides a morphological basis for experimental analyses of the molecules critical for the changing roles of the microenvironment in neuronal specification. 相似文献
4.
S de las Heras E Mengual JL Velayos JM Giménez-Amaya 《Canadian Metallurgical Quarterly》1998,31(4):283-293
This article aims to identify and describe the ethical dilemmas that are involved in the care of patients with incurable cancer. The data were collected in semistructured focused interviews with 32 patients, 13 nurses and 13 doctors from two central hospitals and four community health centres. The interviews were tape-recorded and transcribed verbatim. Interpretation was based on the method of content analysis. Ethical dilemmas occurred at the time of diagnosis, in connection with telling the truth, in providing information, in the treatment of pain, and in decision-making situations concerning active treatment. Dilemmas of active treatment concerned chemotherapy, intravenous infusions, blood transfusions and antibiotics. There were also problems in relationships between nursing staff and next of kin, as well as a lack of co-operation between nurses and doctors. 相似文献
5.
The central nucleus of the amygdala is interconnected with a variety of visceral and autonomic nuclei of the brainstem. These include the parabrachial nucleus, the nucleus of the solitary tract, the nucleus ambiguus and the dorsal motor nucleus of the vagus. Despite repeated attempts, neurochemical characterization of the major subcortical connections of the central nucleus has not yet been accomplished. Based on earlier immunohistochemical and in situ hybridization evidence indicating the presence of numerous GABAergic neurons in the macaque monkey central nucleus, we predicted that a sizeable portion of the descending projections may be GABAergic. We tested this hypothesis using a novel double labelling method with gold conjugated WGA-apoHRP as a retrograde tracer and in situ hybridization for detecting the mRNA that encodes the enzyme glutamic acid decarboxylase (GAD67) as a marker for GABAergic cells. Following WGA-apoHRP-gold injections into the brainstem, a large number of retrogradely labelled cells was observed in the medial and lateral divisions of the central nucleus. Of the retrogradely labelled cells observed in the medial division of the central nucleus, approximately half were double-labelled for GAD67 mRNA; about 30% double labelling was observed in the lateral division. These data support the view that a sizeable component of the central nucleus projection to the brainstem is GABAergic. 相似文献
6.
RJ Giger U Ziegler WT Hermens B Kunz S Kunz P Sonderegger 《Canadian Metallurgical Quarterly》1997,71(1):99-111
A case control study was undertaken to compare the distribution of apolipoprotein (a) phenotypes in patients suffering from atherosclerosis and undergoing coronary bypass surgery with the distribution observed in adequately selected controls. Cases differed from controls for triglycerides (1.90 +/- 0.88 mmol l-1 and 1.16 +/- 0.79 mmol l-1, P < 0.0001, respectively), HDL cholesterol (1.15 +/- 0.34 mmol l-1 and 1.69 +/- 0.42 mmol l-1, P < 0.0001, respectively), apolipoprotein AI (1.31 +/- 0.24 g l-1 and 1.70 +/- 0.29 g l-1, P < 0.0001, respectively) and lipoprotein a (Lp(a)) (0.32 +/- 0.30 g l-1 and 0.19 +/- 0.20 g l-1, P < 0.0001, respectively). The apolipoprotein (a) phenotypes were distributed differently in cases and controls (chi 2 = 25.26, P < 0.0001) with a lower percentage of isoforms of larger size and a higher percentage of isoforms of smaller size in patients. The Lp(a) concentration remained significantly higher in patients than in controls for most of the phenotypes, suggesting that both a high Lp(a) concentration and a different apolipoprotein (a) size distribution could be involved in the development of atherosclerosis in this population. In addition, patients exhibiting the highest Lp(a) concentrations had higher levels of LDL cholesterol and apolipoprotein B than patients exhibiting the lowest Lp(a) concentrations. This feature was not observed in controls. By contrast, controls with the highest Lp(a) concentration had significantly higher triglyceride levels than controls with the lowest Lp(a) concentration. This feature was not observed in patients. Our results indicate that patients undergoing bypass surgery have higher Lp(a) concentrations than controls, this increase being not completely explained by the difference in apolipoprotein (a) phenotype distribution. The high Lp(a) concentration seems to be associated with different lipid profiles in patients than in controls. 相似文献
7.
Arachidonic acid metabolites are potent modulators in physiology and mediators in pathophysiology of airways. They play important role in allergic diseases. There are two main sources of eicosanoids found in nasal and bronchial lavages: airway epithelial cells and influx cells. Authors described spectra of eicosanoids produced by epithelial cells in vitro and compare them with in vivo findings. The review of similarities and differences between arachidonic acid metabolism in human upper and lower airways is also included. 相似文献
8.
FG Szele JJ Dowling C Gonzales M Theveniau G Rougon MF Chesselet 《Canadian Metallurgical Quarterly》1994,60(1):133-144
In rats, morphological and synaptic maturation of the striatum, a brain area involved in the control of movement and in cognitive behaviour, proceeds for several weeks postnatally. Little is known, however, about the molecular events associated with the final maturation of the striatum. In particular, there is little information on molecules playing a role in cell adhesion, a phenomenon of particular importance for neuronal development. We have examined the time course and topography of expression of the highly polysialylated form of the neural cell adhesion molecule in the rat striatum during postnatal development and in the adult, and compared it to growth-associated protein-43, a marker of axonal growth. As earlier during development [Aaron L. I. and Chesselet M.-F. (1989) Neuroscience 28, 701-710], immunolabelling for polysialylated neural cell adhesion molecule was very intense in the entire striatum at postnatal days 17-19. At postnatal days 21 and 22, loss of polysialylated neural cell adhesion molecule immunoreactivity in the caudal part of the striatum contrasted with the persistence of immunoreactivity at more rostral levels. Most of the striatum was devoid of polysialylated neural cell adhesion molecule immunoreactivity by postnatal day 25. At this age, as well as in the striatum of adult rats, immunolabelling was only observed along the ventricular edge of the striatum. In contrast to polysialylated neural cell adhesion molecule immunoreactivity, immunolabelling for growth-associated protein-43 had reached its adult pattern by postnatal day 17, indicating that polysialylated neural cell adhesion molecule persists beyond the period of major axonal growth. In the adult, an area of stronger growth associated protein-43 immunoreactivity overlapped with the region which retained immunoreactivity to polysialylated neural cell adhesion molecule. The results indicate that, in the developing rat striatum, the neural cell adhesion molecule remains highly sialylated not only during the ingrowth of cortical and nigral inputs but also during the formation of dendritic spine and synaptogenesis. Loss of polysialyated neural cell adhesion molecule occurs at the time of emerging spontaneous activity in cerebral cortex, and precedes the development of mature responses to cortical stimulation and adult membrane properties in a majority of striatal neurons. 相似文献
9.
A role for polysialic acid in neural cell adhesion molecule heterophilic binding to proteoglycans 总被引:1,自引:0,他引:1
The neural cell adhesion molecule (NCAM) is known to participate in both homophilic and heterophilic binding, the latter including mechanisms that involve interaction with proteoglycans. The polysialic acid (PSA) moiety of NCAM can serve as a negative regulator of homophilic binding, but indirect evidence has suggested that PSA can also be involved in heterophilic binding. We have examined this potential positive role for PSA in terms of the adhesion of PSA-expressing mouse F11 cells and chick embryonic brain cells to substrates composed of the purified heparan sulfate proteoglycans agrin and 6C4. This adhesion was specifically inhibited by polyclonal anti-NCAM Fab antibodies, monoclonal anti-PSA antibodies, PSA itself, and enzymatic removal of either PSA or heparan sulfate side chains. By contrast, the adhesion was not affected by chondroitinase, and cell binding to laminin was not inhibited by any of these treatments. A specific NCAM-heparan sulfate interaction in this adhesion was further indicated by its inhibition with monoclonal anti-NCAM Fab antibodies that recognize the known heparin-binding domain of NCAM and with the HBD-2 peptide derived from this region, but not with antibodies directed against other regions of the protein including the homophilic binding region. Together, the results suggest that PSA can act in vitro either as a receptor in NCAM heterophilic adhesion or as a promoter of binding between heparan sulfate proteoglycans and the NCAM heparin-binding domain. 相似文献
10.
JJ Rodriguez MF Montaron KG Petry C Aurousseau M Marinelli S Premier G Rougon M Le Moal DN Abrous 《Canadian Metallurgical Quarterly》1998,10(9):2994-3006
The gyrus dentatus is one of the few areas of the brain that continues to produce neurons after birth. The newborn cells differentiate into granule cells which project axons to their postsynaptic targets. This step is accompanied by the transient expression of the polysialylated isoforms of neuronal cell adhesion molecules (PSA-NCAM) by the developing neurons. Glucocorticoid hormones have been shown to inhibit neurogenesis. We noted a functional correlation between PSA-NCAM expression and glucocorticoid action after manipulation of corticosterone levels in the adrenalectomized rat. Adrenalectomy increased neurogenesis, evaluated from the incorporation of 5-bromo-2'-deoxyuridine in neuronal precursors, as well as PSA-NCAM expression. The increase in PSA-NCAM-immunoreactive (IR) cells in the gyrus dentatus, evidenced 72 h following adrenalectomy, persisted for at least a month. It was accompanied by enhanced dendritic arborization of PSA-NCAM-IR cells in the gyrus dentatus and by an increase in number of PSA-NCAM-IR fibres in the CA3 subfield. Neurogenesis was normalized by restitution of diurnal or nocturnal levels of corticosterone, whereas normalization of PSA-NCAM expression was only observed after simulation of the complete circadian fluctuation of the hormone. Our findings reveal the complex action of corticosterone in modulating the expression of PSA-NCAM in the gyrus dentatus of the hippocampal formation. They also highlight the importance of corticosterone fluctuations in the control of neurogenesis and plasticity in this structure. 相似文献
11.
12.
A new pH indicator, seminaphthofluorescein (SNAFL)-calcein acetoxymethyl ester, was used for intracellular pH (pHi) measurement in living MDCK cells with a laser scanning confocal microscope (LSCM) equipped with an Argon/Krypton laser and dual-excitation and dual-emission (FITC/Texas Red) filter set. SNAFL-calcein excitation maxima are approximately 492/540 nm (acid/base) and emission maxima are approximately 535/625 nm (acid/base) with a pKa value at approximately 7.0. The absorption/emission spectra of SNAFL-calcein indicate that the ratio of emission intensities of its basic/acidic forms is pH dependent. With an Argon/Krypton LSCM, we were able to monitor the acidic and basic forms of this dye simultaneously using dual-excitation (488/568 nm) and dual-emission (525-614 nm/> or = 615 nm) wavelengths (lambda s). The simultaneous dual-excitation/emission LSCM system allows for efficient recording of pHi dynamics (time resolution approximately 1 sec) in living cells. We have analyzed emission stability of the dye at different temperatures (22 degrees C and 37 degrees C) and constant pH, and at the same temperature (22 degrees C) but various pHs (6.6, 7.0, and 7.4). Bleaching rate is slightly higher at 37 degree C than that at 22 degrees C. The basic form of the dye (lambda Em approximately 625 nm) has a slightly higher bleaching rate than the acidic form (lambda Em approximately 535 nm) in standard culture medium (pH 7.3) at either 22 degree C or 37 degrees C. The pHi in MDCK cells calculated from ratio images (535 nm/625 nm) was 7.19 +/- 0.03 (mean +/- SEM, n = 20). Calibration experiments show that the useful pH range of SNAFL-calcein appears to be between 6.2 and 7.8, as the dye is difficult to calibrate outside this pH range. 相似文献
13.
Primed in situ labeling (PRINS) is a rapidly developing new technology with wide ranging clinical applications. To assess the sensitivity, specificity, and accuracy of PRINS, we carried out a retrospective study on cultured bone marrow cells to detect aneuploidy for chromosomes 7, 8, and 12. The results were then compared to the results of previous fluorescence in situ hybridization (FISH) and chromosome analyses (CA). In patients who showed aneuploidy with CA, both FISH and PRINS confirmed the aneuploidy in interphase cells. FISH and PRINS also showed excellent correlation with conventional cytogenetic analysis for the detection of mosaic aneuploidies. However, both FISH and PRINS showed significantly higher sensitivity in the detection of abnormal clones compared to CA. In 9 of the 17 cases, there were no significant differences in the detection rates between the two methods. Based on our studies, we conclude that PRINS is as sensitive as FISH in most cases for aneuploidy detection; and that PRINS, like FISH, is more sensitive than conventional CA for aneuploidy detection. 相似文献
14.
The inner ear forms by a series of folds within an ectodermal placode. Previous work has shown that changes in surrounding tissues play a more prominent role in invagination than changes in the cytoskeleton of the primordium. Interference with the integrity of the extracellular matrix causes abnormalities in the folding process, primarily related to abnormalities in the paraxial mesoderm which lies ventral to the placode. In this study, the role of the neural cell adhesion molecule (N-CAM) was investigated, based on the expression of this component of the plasmalemma at the time the otic placode begins to fold. Microinjection of blocking antibodies to N-CAM into the paraxial mesoderm adjacent to the otic placode resulted in two major classes of defects, detachment of the primordium from the neural tube and interference with formation of the folds. Microinjection of saline, control immunoglobulin, or antibody against cytoplasmic domain had no effect. These defects correlate with the pattern of N-CAM expression at the time of injection, along the neural ectoderm and otic epithelium and the mesenchyme cells ventral to the primordium. It seems likely that N-CAM is playing a role in heterophilic associations rather than through the homophilic binding domain during formation of the otic vesicle. 相似文献
15.
ME Andrés K Gysling S Araneda A Venegas G Bustos 《Canadian Metallurgical Quarterly》1996,46(3):375-384
Antisense digoxigenin-labeled deoxyoligonucleotides probes and non-isotopic in situ hybridization (HIS) techniques have been used to explore the NMDA-NR1 receptor subunit mRNA distribution in different brain areas of rats which had their dopaminergic nigrostriatal pathway previously lesioned with intracerebral administration of 6-OH-dopamine (6-OH-DA). Intense and significant hybridization signals for NR1 mRNA were found in dentate gyrus and regions CA1-CA2-CA3 of the hippocampus, in layers II-III and V-VI of the cerebral cortex, and in the cerebellum of sham-treated rats. Basal ganglia structures such as the striatum exhibited few NR1 mRNA hybridization signals as compared to the hippocampus and cerebral cortex. In contrast, both zona compacta and reticulata of substantia nigra (SN) showed a reduced number of cells with nevertheless intense NR1 mRNA HIS signals. The NR1 mRNA distribution in the brain was affected in a brain regional selective manner by 6-OH-DA induced lesions of DA neuronal systems. A striking increase in NR1 mRNA HIS signals was observed in both striata after unilateral lesioning with 6-OH-DA. Instead, in SN compacta but not in reticulata, a moderate but significant bilateral reduction of NR1 mRNA was observed after unilateral 6-OH-DA injection. No significant changes in NR1 mRNA were detected in cerebral cortex and other brain regions after 6-OH-DA treatment. These studies, and others reported in the literature, support the view that extensive lesions of nigrostriatal DA-containing neurons in the brain may trigger compensatory or adaptative responses in basal ganglia structures such as striatum and substantia nigra which involve glutamateric neurons and the genic expression of NMDA receptors. 相似文献
16.
We developed a decerebrate, vagotomized, newborn rat preparation to investigate brainstem respiratory control mechanisms without the influence of anesthesia, supra-pontine structures, or vagally mediated feedback mechanisms. We measured the changes in phrenic nerve electrical activity in response to breathing 3% and 5% CO2 in unanesthetized, vagotomized, decerebrate newborn rats from 0 to 10 days of age and compared them with the changes in anesthetized, vagotomized, newborn rats and adult, vagotomized, decerebrate or anesthetized, animals. Phrenic nerve activity was irregular in the young newborn rats and became more regular between 7 and 10 days of age. T1 and T1/Ttot increased with age but increasing age had no influence on the response to CO2. The response to CO2 was dominated by increases in phrenic amplitude, minute activity, and inspiratory slope with no change in timing variables. These responses are similar to those that have been reported previously in vagally intact animals, suggesting that vagal feedback contributes little to the response to hypercapnia in the newborn rat. In summary, decerebrate newborn rats consistently respond to hypercapnia by increasing inspiratory drive similar to conscious animals. 相似文献
17.
K Pierre G Rougon M Allard R Bonhomme G Gennarini DA Poulain DT Theodosis 《Canadian Metallurgical Quarterly》1998,18(14):5333-5343
F3, a glycoprotein of the immunoglobulin superfamily implicated in axonal growth, occurs in oxytocin (OT)-secreting and vasopressin (AVP)-secreting neurons of the adult hypothalamo-neurohypophysial system (HNS) whose axons undergo morphological changes in response to stimulation. Immunocytochemistry and immunoblot analysis showed that during basal conditions of HNS secretion, there are higher levels of this glycosylphosphatidyl inositol-anchored protein in the neurohypophysis, where their axons terminate, than in the hypothalamic nuclei containing their somata. Physiological stimulation (lactation, osmotic challenge) reversed this pattern and resulted in upregulation of F3 expression, paralleling that of OT and AVP under these conditions. In situ hybridization revealed that F3 expression in the hypothalamus is restricted to its magnocellular neurons and demonstrated a more than threefold increase in F3 mRNA levels in response to stimulation. Confocal and electron microscopy localized F3 in secretory granules in all neuronal compartments, a localization confirmed by detection of F3 immunoreactivity in granule-enriched fractions obtained by sucrose density gradient fractionation of rat neurohypophyses. F3 was not visible on any cell surface in the magnocellular nuclei. In contrast, in the neurohypophysis, it was present not only in secretory granules but also on the surface of axon terminals and glia and in extracellular spaces. Taken together, our observations reveal that the cell adhesion glycoprotein F3 is colocalized with neurohypophysial peptides in secretory granules. It follows, therefore, the regulated pathway of secretion in HNS neurons to be released by exocytosis at their axon terminals in the neurohypophysis, where it may intervene in activity-dependent structural axonal plasticity. 相似文献
18.
In situ hybridization of a biotin-labeled specific dopamine1A (D1A) receptor gene oligonucleotide probe combined with computer-assisted image analyzer was used to directly visualize D1A receptor mRNA and quantify the relative mRNA levels in sections of rat aorta and pulmonary and caudal arteries. Positive D1A receptor mRNA signals were found in rat aorta and pulmonary arteries, while no specific signals could be detected in the caudal artery. D1A receptor mRNA was located mainly within the medial layer of aorta, with intimal distribution in the pulmonary artery. The density of D1A receptor mRNA in different vascular beds demonstrated heterogeneity. D1A receptor mRNA levels in the aorta were much higher than those in the pulmonary artery (p < 0.01). These results demonstrate the existence of D1A receptor mRNA in both aorta and pulmonary beds, although with different distribution and density. The results further support the heterogeneity of the D1A receptor in different vascular beds. 相似文献
19.
The documented trophic actions of the neurotrophins brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5) upon ventral mesencephalic dopamine neurons in vitro and in vivo are presumed to be mediated through interactions with their high-affinity receptors TrkB (for BDNF and NT-4/5) and TrkC (for NT-3). Although both neurotrophin receptor mRNAs have been detected within the rat ventral midbrain, their specific association with mesencephalic dopaminergic cell bodies remains to be elucidated. The present study was performed to determine the precise organization of trkB and trkC mRNAs within rat ventral midbrain and to discern whether the neurotrophin receptor mRNAs are expressed specifically by dopaminergic neurons. In situ hybridization with isotopically labeled cRNA probes showed that trkB and trkC mRNAs were expressed in all mesencephalic dopamine cell groups, including all subdivisions of the substantia nigra and ventral tegmental area, and in the retrorubral field, rostral and caudal linear raphe nuclei, interfascicular nucleus, and supramammillary region. Combined isotopic/nonisotopic double-labeling in situ hybridization demonstrated that virtually all of the tyrosine hydroxylase (the catecholamine biosynthetic enzyme) mRNA-containing neurons in the ventral midbrain also expressed trkB or trkC mRNAs. Additional perikarya within these regions expressed the neurotrophin receptor mRNAs but were not dopaminergic. The present results demonstrate that essentially all mesencephalic dopaminergic neurons synthesize the neurotrophin receptors TrkB and TrkC and thus exhibit the capacity to respond directly to BDNF and NT-3 in the adult midbrain in vivo. Moreover, because BDNF and NT-3 are produced locally by subpopulations of the dopaminergic cells, the present data support the notion that the neurotrophins can influence the dopaminergic neurons through autocrine or paracrine mechanisms. 相似文献
20.
TE Spencer FF Bartol FW Bazer GA Johnson MM Joyce 《Canadian Metallurgical Quarterly》1999,60(2):241-250
We cloned the dbl-1 gene, a C. elegans homolog of Drosophila decapentaplegic and vertebrate BMP genes. Loss-of-function mutations in dbl-1 cause markedly reduced body size and defective male copulatory structures. Conversely, dbl-1 overexpression causes markedly increased body size and partly complementary male tail phenotypes, indicating that DBL-1 acts as a dose-dependent regulator of these processes. Evidence from genetic interactions indicates that these effects are mediated by a Smad signaling pathway, for which DBL-1 is a previously unidentified ligand. Our study of the dbl-1 expression pattern suggests a role for neuronal cells in global size regulation as well as male tail patterning. 相似文献