首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract

The detonation of high explosive (HE) material generates a cloud containing a high concentration of detonation products in the form of aerosol particles and gases. Modeling and simulation of aerosol metrics in an explosive cloud is a complex problem as it involves various processes such as chemical reaction, nucleation, volume expansion, and coagulation. Several models have been developed to study the atmospheric dispersion of these detonation products, but very few or no model is available to study the evolution of aerosol metrics at the early stage. In this work, we present a numerical model to simulate the temporal evolution of aerosol metrics in an expanding cloud by coupling transient thermodynamic properties with important microphysical processes. To illustrate the application, the numerical model is applied to a typical HE, and the aerosol particle properties such as size distribution, number concentration, and average size are estimated from the numerical results. These results will provide the essential input conditions for atmospheric dispersion models to estimate the atmospheric concentration and deposition of aerosol particles.

Copyright © 2020 American Association for Aerosol Research  相似文献   

3.
A three-dimensional stochastic model is developed for predicting atmospheric aerosol collection and aggregation on the surface of a falling raindrop at its terminal velocity. Potential flow and viscous flow are assumed as the flow fields in the vicinity of the large and the small raindrops, respectively. The results show that hydrophobic coarse mode aerosols collected by either small raindrops (dc < 100 μm) or large drops (dc > 100 μm) form aggregations on the surfaces of drops, and accumulation mode aerosols tend to be captured by the aggregations or hydrophobic coarse particles which have been collected by the drops, and this may significantly enhance the capability of the raindrop for fine aerosol collection. When the aggregation effect is considered in the calculation, fine aerosol efficiency can be promoted by one to two orders of magnitude. Therefore, fine particle collision efficiency by raindrops is underestimated by employing the classical dynamic theory which neglects the particle aggregation effect. However, the collection efficiency of coarse particles remains almost constant with the increase in the amount of particles collected by large drops, while there is only a slight increase in efficiency by small raindrops upon increasing in particle concentration. This implies that the traditional limiting trajectory method can still be used for the calculation of coarse particle collection efficiencies by either small or large raindrops.

Copyright © 2018 American Association for Aerosol Research  相似文献   


4.
5.
In gas-liquid contact devices like absorbers, scrubbers, quench coolers or condensers, aerosols can be formed by spontaneous phase transitions, initiated by homogeneous or heterogeneous nucleation, if special process operation conditions lead to a metastable, i.e. a supersaturated state in the gas phase. Aerosol formation can impact severely the mass separation efficiency of gas-liquid contactors. This is demonstrated by experiments performed in semi-technical plants.The paper is aimed to identify strategies for understanding and describing the complex aerosol behaviour in gas-liquid contact devices.Operation conditions are identified under which supersaturation can arise, and the fundamentals of modelling aerosol formation and growth in gas-liquid contactors are discussed.The SENECA code developed by the authors allows to simulate aerosol formation and behaviour in contact devices as well as in multistage gas cleaning processes. Experimental results show that most of all important features of aerosol behaviour in flue gas cleaning and in condensation processes can be predicted with good accuracy by SENECA.  相似文献   

6.
Many numerical models have been developed to model the particle dynamics in the electrostatic precipitators in recent years. These models employ various particle charging models including field charging theory, diffusion charging theory and combined field-diffusion theory. These various charging models have different accuracy and require different amount of computational time. This work constructed a numerical model of the electrostatic precipitator and nine particle charging models were evaluated based on the existing experimental results. The results show that predictions of the constant charging models are higher than that of the non-constant models but differ little for the sub-micrometer particles. In the field-diffusion combining models, the one developed by Lawless (1996) should be the first choice relatively for numerical models of the particle dynamics in electrostatic precipitators.  相似文献   

7.
Crosslinked organic polymers are used in a wide variety of coatings and composites to distribute stress, increase toughness and protect the substrate by limiting the passage of aggressive chemicals. Enhancing performance of crosslinked polymers requires understanding how precursor chemistry and geometry, as well as crosslinking protocol, determine the structure and performance of the resulting network. Previous molecular dynamics studies have indicated that cavitation produces pores in simulated liquids, even metals (and the resultant solids), when there is only a single type of force, usually van der Waals, between particles. Here we show that nano-sized cavitation voids also occur in a system bound by van der Waals (Lennard–Jones) forces that is additionally crosslinked with strong covalent (FENE) bonds to form 3 or 6 functional solid networks. Cavitation was observed in both systems. These voids are not a consolidation of “free volume”, nor due to a loss of volatiles, but happen as the solidification/cooling stresses exceed the local tensile strength of the material. At temperatures well above the glass transition temperature, “free volume” is distributed evenly throughout the sample in very small pores. As the system cools through its rubbery phase, a few larger voids form via cavitation. Although the loci of these larger voids is associated with crosslinked nodes, cavitation involves the rupturing of weak van der Waals (Lennard–Jones) bonds between molecular chains in regions not constrained by the strong intramolecular bonds. Voids were observed to form during rapid quenches, as well as during much slower cooling at fixed volume, which emulates adhesion of the network to a more rigid body. The voids are large compared to the dimensions of aggressive ionic species and water molecules, and may potentially reduce the barrier properties of a crosslinked coating or composite. Such pore formation, via cavitation, during network formation and curing is not incorporated in current theories of the crosslinking process.  相似文献   

8.
9.
郭浩  宋先雨  赵国林  赵双良  韩霞  刘洪来 《化工学报》2018,69(11):4887-4895
接枝聚合物纳米颗粒在构筑多级功能性纳米材料方面具有很大潜力,但其在选择性溶剂中自组装相图却鲜见报道。利用耗散粒子动力学模拟研究了溶剂选择性、接枝聚合物链长度以及亲水、疏水聚合物链比例等因素对双亲纳米颗粒自组装行为的影响,并绘制了自组装形态相图。结果显示,随着浓度的增大,双亲纳米颗粒逐渐自组装成球状、棒状、二维膜、纳米膜孔等丰富纳米结构。不仅如此,溶剂与亲水、疏水聚合物相容性差异较小时(aS-HL=40kBT/Rc,aS-HB=50kBT/Rc),双亲纳米颗粒自组装形成层状纳米结构,在较高浓度时,形成规则的多孔网络结构。研究发现,双亲纳米颗粒浓度和接枝聚合物的链长以及亲水、疏水聚合物链比例是调控双亲纳米颗粒自组装形态的关键因素。鉴于双亲纳米颗粒丰富的自组装行为,它在气体分离、检测、载药、催化剂载体等领域有着很大的潜在应用价值。  相似文献   

10.
11.
The Aerosol Mass Spectrometer (AMS) and Aerosol Chemical Speciation Monitor (ACSM) are widely used for quantifying submicron aerosol mass concentration and composition, in particular for organic aerosols (OA). Using the standard vaporizer (SV) installed in almost all commercial instruments, a collection efficiency (CE) correction, varying with aerosol phase and chemical composition, is needed to account for particle bounce losses. Recently, a new “capture vaporizer” (CV) has been shown to achieve CE~1 for ambient aerosols, but its chemical detection properties show some differences from the SV due to the increased residence time of particles and vaporized molecules inside the CV. This study reports on the properties and changes of mass spectra of OA in CV-AMS using both AMS and ACSM for the first time. Compared with SV spectra, larger molecular-weight fragments tend to shift toward smaller ions in the CV due to additional thermal decomposition arising from increased residence time and hot surface collisions. Artifact CO+ ions (and to a lesser extent, H2O+), when sampling long chain alkane/alkene-like OA (e.g., squalene) in the CV during the laboratory studies, are observed, probably caused by chemical reactions between sampled OA and molybdenum oxides on the vaporizer surfaces (with the carbon derived from the incident OA). No evidence for such CO+ enhancement is observed for ambient OA. Tracer ion marker fractions (fm/z =, i.e., the ratio of the organic signal at a given m/z to the total OA signal), which are used to characterize the impact of different sources are still present and usable in the CV. A public, web-based spectral database for mass spectra from CV-AMS has been established.

Copyright © 2018 American Association for Aerosol Research  相似文献   


12.
A key atmospheric process that is studied in laboratory chambers is the oxidation of volatile organic compounds to form low volatility products that condense on existing atmospheric particles (or nucleate) to form organic aerosol, so-called secondary organic aerosol. The laboratory chamber operates as a chemical reactor, in which a number of chemical and physical processes take place: gas-phase chemistry, transport of vapor oxidation products to suspended particles followed by uptake into the particles, deposition of vapors on the walls of the chamber, deposition of particles on the walls of the chamber, and coagulation of suspended particles. Understanding the complex interplay among these simultaneous physicochemical processes is necessary in order to interpret the results of chamber experiments. Here we develop and utilize a comprehensive computational model for dynamics of vapors and particles in a laboratory chamber and analyze chamber behavior over a range of physicochemical conditions.

Copyright © 2018 American Association for Aerosol Research  相似文献   


13.
In this paper, we perform linear stability analysis of high- and low-dimensional models for describing mixing-limited pattern formation in fast, homogeneous autocatalytic reactions occurring in isothermal tubular reactors. We consider three different models of varying dimensionality—the 3D convection-diffusion-reaction (CDR) model is the high dimensional one, and the Liapunov–Schmidt reduction based spatially averaged two-dimensional CDR model and its regularized form are the two low-dimensional ones. For each of these three models, steady state bifurcation diagrams that show the presence of multiple steady states were obtained and the stability of these multiple steady states to transverse perturbations was analyzed using linear stability analysis. Parametric analysis of the steady state bifurcation diagrams shows that for sufficiently large values of transverse Péclet number p, mixing-limited patterns may emerge from the unstable middle branch that connects the ignition and extinction points of an S-shaped bifurcation curve. Comparison of the bifurcation diagrams and the stability boundaries of the two low-dimensional models with that of the 3D CDR model reveals that the regularized form of the low-dimensional model has higher accuracy and a larger region of validity than the averaged form and is therefore recommended over the latter.  相似文献   

14.
Connections between observed particle formation rates (typically at diameter 3 nm or larger) and the actual nucleation rates have important applications in atmospheric science. First, nucleation theories can be evaluated and second, semi-empirical particle formation rates can be developed for large scale models that neglect the cumbersome initial steps of formation and growth. Kerminen and Kulmala, by estimating the particle formation rate, nucleation mode growth rate and scavenging rate onto background particles (coagulation sink) from measured size distribution evolution, derived a simple yet rather accurate formula for this purpose [Kerminen V.-M., Kulmala, M. (2002). Analytical formulae connecting the “real” and the “apparent” 25 nucleation rate and the nuclei number concentration for atmospheric nucleation events, Journal of Aerosol Science 33, 609–622]. The present work reformulates the original theory in a way that two drawbacks are eliminated: (1) the original expression was derived using a slightly inaccurate coagulation sink dependence on particle size and (2) was based on knowing the condensation sink which requires knowledge of the condensing vapors.  相似文献   

15.
16.
Thermal desorption aerosol mass spectrometers (TDAMSs) with electron ionization are widely used to quantitatively measure aerosol chemical compositions. The physical and chemical mechanisms affecting the ionization efficiency of evolved gas molecules are not fully understood. We have developed a numerical model for simulating the dynamics of gas molecules evolved from aerosol particles. The simulation model is composed of two main sections. The first section simulates the elastic collisions of the evolved gas molecules in a small region near the vaporization source (collision domain), where the mean free paths of the molecules are much shorter than those in the surrounding high vacuum environment. The second section simulates the free-molecular dynamics from the boundary of the first section to the ionizer. The ionization efficiencies of ammonia and hydrogen iodide molecules that evolved from ammonium iodide particles were evaluated. Our results suggest that the molecular collisions during the early stage of plume expansion and possible changes in the molecular velocities induced by these collisions could be an important mechanism affecting the observed variability in the ionization efficiency. However, the physical and chemical processes of the vaporization and ionization of aerosol particles in TDAMSs may be too complex to be quantitatively reproduced using simplified numerical models.

Copyright © 2019 American Association for Aerosol Research  相似文献   


17.
Computational fluid dynamics (CFD) simulations were conducted in a model of the complete nasal passages of an adult male Sprague-Dawley rat to predict regional deposition patterns of inhaled particles in the size range of 1 nm to 10 μm. Steady-state inspiratory airflow rates of 185, 369, and 738 ml/min (equal to 50%, 100%, and 200% of the estimated minute volume during resting breathing) were simulated using Fluent?. The Lagrangian particle tracking method was used to calculate trajectories of individual particles that were passively released from the nostrils. Computational predictions of total nasal deposition compared well with experimental data from the literature when deposition fractions were plotted against the Stokes and Peclet numbers for micro- and nanoparticles, respectively. Regional deposition was assessed by computing deposition efficiency curves for major nasal epithelial cell types. For micrometer particles, maximum olfactory deposition was 27% and occurred at the lowest flow rate with a particle diameter of 7 μm. Maximum deposition on mucus-coated non-olfactory epithelium was 27% for 3.25 μm particles at the highest flow rate. For submicrometer particles, olfactory deposition reached a maximum of 20% with a particle size of 5 nm at the highest flow rate, whereas deposition on mucus-coated non-olfactory epithelium reached a peak of approximately 60% for 1–4 nm particles at all flow rates. These simulations show that regional particle deposition patterns are highly dependent on particle size and flow rate, indicating the importance of accurate quantification of deposition in the rat for extrapolation of results to humans.  相似文献   

18.
A limit on particle number emission from the exhaust of Euro 5/6 engines will take effect in 2011 and engine exhaust particle number concentrations are required to be measured by particle number counters that meet requirements set forth by the UN/ECE particulate measurement programme (PMP). The TSI Model 3790 engine exhaust condensation particle counter (EECPC) was developed to meet these PMP requirements. This paper describes an experimental study that evaluated the performance of the EECPC. Experimental setup and procedures for calibrating EECPCs were evaluated. It was found that the EECPC counting efficiency strongly depended on the aerosol material. Among several materials tested, the counting efficiencies were highest for poly-α-olefin and lowest for sodium chloride. Errors in the concentration measurement due to the aerosol material dependence were estimated and found to be significant. Considerations for selecting aerosol materials for EECPC calibration are discussed with regard to best match with engine testing conditions.  相似文献   

19.
The present study provides a comprehensive investigation on the solution of the dynamic population balance equation (PBE) for particulate processes undergoing simultaneous particle nucleation, growth and aggregation. The general PBE was numerically solved in both the continuous and its equivalent discrete form using the orthogonal collocation on finite elements and the discretized PBE method, respectively. A detailed investigation on the effect of particle nucleation rate on the calculated particle size distribution (PSD) was carried out over a wide range of variation of dimensionless aggregation, nucleation and growth times. The performance (i.e., accuracy and stability) of the two numerical methods was assessed by a direct comparison of predicted PSDs and/or their respective moments to available analytical solutions. For combined aggregation and nucleation problems, the numerical error scaled with the product of the dimensionless aggregation and nucleation times. On the other hand, for combined growth and nucleation problems, the numerical error scaled only with the dimensionless growth time. For particulate systems with minimal particle growth, constant particle nucleation rate and Brownian aggregation, the total particle number approached a “steady-state” value characterized by the equilibrium of particle aggregation and nucleation rates. When the particle nucleation rate followed a pulse-like function, the PSD converged to a self-similar distribution after the end of particle nucleation. Moreover, for particulate systems exhibiting a constant particle nucleation rate and a Brownian-type particle aggregation kernel, an increase in the particle growth rate resulted in a decrease in the final total number of particles. On the other hand, for a constant particle nucleation rate and an electrostatically stabilized Brownian aggregation kernel, an increase in the particle growth rate can lead to an increase in the final total number of particles.  相似文献   

20.
The goal of Dynameomics is to perform atomistic molecular dynamics (MD) simulations of representative proteins from all known folds in explicit water in their native state and along their thermal unfolding pathways. Here we present 188-fold representatives and their native state simulations and analyses. These 188 targets represent 67% of all the structures in the Protein Data Bank. The behavior of several specific targets is highlighted to illustrate general properties in the full dataset and to demonstrate the role of MD in understanding protein function and stability. As an example of what can be learned from mining the Dynameomics database, we identified a protein fold with heightened localized dynamics. In one member of this fold family, the motion affects the exposure of its phosphorylation site and acts as an entropy sink to offset another portion of the protein that is relatively immobile in order to present a consistent interface for protein docking. In another member of this family, a polymorphism in the highly mobile region leads to a host of disease phenotypes. We have constructed a web site to provide access to a novel hybrid relational/multidimensional database (described in the succeeding two papers) to view and interrogate simulations of the top 30 targets: http://www.dynameomics.org. The Dynameomics database, currently the largest collection of protein simulations and protein structures in the world, should also be useful for determining the rules governing protein folding and kinetic stability, which should aid in deciphering genomic information and for protein engineering and design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号