首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many well-established models can be applied to calculate the filtration efficiencies. In these models the filtration velocity and challenging particle size are assumed to be known accurately. However, in realistic filtration tests, the filtration velocity has profiles dependent on the filter holder geometry and experimental conditions; the challenging particles have size distributions dependent on the instruments and operation conditions. These factors can potentially affect the measured filtration efficiency and lead to discrepancies with the models.

This study aims to develop an integrative model to predict the filtration efficiencies in realistic tests by incorporating the effects of the filtration velocity profile and challenging particle size distribution classified by a differential mobility analyzer (DMA) into the existing filtration models. Face velocity profile is modeled with fluid mechanics simulations; the initial generated particle size distribution, the particle charging status and the DMA transfer function are modeled to obtain the challenging particle size distribution. These results are then fed into the filtration models. Simulated results are compared with experimental ones to verify the model accuracy. This model can be used to reduce filtration test artifacts and to improve the experimental procedure.

The results reveal that the face velocity upstream the filter exhibits high degree of homogeneity not affecting the filtration efficiency if the filter pressure drop is not very low. The generated particle size distribution and the DMA selection size window could influence the challenging particle size distribution and therefore the measured filtration efficiency.

Copyright © 2017 American Association for Aerosol Research  相似文献   


2.
The accuracy of numerical finite-difference solutions to the one-way-coupled Eulerian partial differential equations for particle concentration in the presence of thermophoresis and diffusion is explored at different Schmidt numbers in laminar boundary-layer flow of a hot gas over a cold wall. Crank-Nicolson and MacCormack space-marching solutions to the coupled partial differential equations are compared with essentially exact solutions to the self-similar ordinary differential equation problem to determine the requirements for achieving accuracy in numerical solutions. When the diffusion sublayer at the wall is to be resolved, in flows laden with nanometer particles, the cell “Peclet” number referenced to the thermophoretic velocity and grid spacing in the wall-normal direction, and particle diffusion coefficient, serves as a criterion for the accuracy of space-marching solutions and determines the required number of wall-normal grid points, which is proportional to the particle Schmidt number. This criterion should be a useful guide in computations of other wall-bounded flows with thermophoresis, for which no accuracy criterion exists. When the diffusion sublayer at the wall is too thin to be resolved, as in flows laden with micron-size or larger particles, outer solutions to the particle concentration equation with no Brownian particle diffusion give excellent predictions of both the particle concentration profile and the flux of particles to the wall.

Copyright 2014 American Association for Aerosol Research  相似文献   


3.
The estimation of air velocity distributions and particle trajectories is inevitable to analyse the mechanism of classification, but the direct measurement of il is extremely difficult.

The authors, here report three dimensional air velocity distributions within the inside drum of model Sturtevant-type air classifier measured by a spherical five-holed Pitot-lube, and also two dimensional particle ejecting velocities on a model distributor determined by photography.

Using those results, the cut size calculated from particle trajectories in the classifier is compared with the experimental results and theoretical values.  相似文献   


4.
The adverse health effect of acidic ultrafine particles (AUFPs) has been widely recognized in scientific societies. These particles mainly deposit on the surface by diffusion and so far there is no mature method for the measurement of airborne AUFPs. The purpose of this study was to develop a diffusion sampler (DS) with iron nanofilm detectors to effectively measure the number concentration and size distribution of airborne AUFPs in indoor and outdoor environments. The developed DS was made of stainless steel with a flat and rectangular channel with 1.0 mm height, 50 mm width, and 500 mm length. The iron nanofilm detectors were deployed on rectangular recesses inside the sampler at three different locations along the length of the channel to collect the ultrafine particles. The exposed detectors were then scanned using an atomic force microscope (AFM) to numerate and distinguish the AUFPs from the nonacidic UFPs. Prior to sampling, the semi-empirical equations for the diffusive deposition efficiency of particles at the different detector locations in the sampler were obtained on the basis of theoretical diffusive mechanism and modified by the experimental data using polystyrene latex (PSL) standard particles. After calibration, the DS + AFM method and a commercially available online measurement system, i.e., scanning mobility particle sizer (SMPS) incorporated with a condensation particle counter (CPC), were simultaneously used in a 4-week field measurement. Both methods showed very good agreement in terms of total particle number concentration and size distribution. The results indicate that the diffusion sampler is effective for the quantification of ambient acidic ultrafine particles.

Copyright 2014 American Association for Aerosol Research  相似文献   


5.
We introduce a particle charge-size distribution measurement method using a differential mobility analyzer and an electrical low pressure impactor in tandem configuration. The main advantage of this type of measurement is that it is suitable for a wide range of particle sizes, from approximately 30 nm up to a micrometer, and for high charge levels, which have been problematic for previously used methods. The developed charge measurement method requires information on the particle effective density, and the accuracy of the measurement is dependent on how well the particle effective density is known or estimated. We introduce the measurement and calculation procedures and test these in laboratory conditions. The developed method has been tested using narrow and wide particle size distributions of a known density and well-defined particle charging states. The particles have been produced by the Singly Charged Aerosol Reference (SCAR) and an atomizer and charged with the previously well-characterized unipolar diffusion chargers used in the Nanoparticle Surface Area Monitor (NSAM) and in the Electrical Low Pressure Impactor (ELPI+). The acquired charge-size distributions are in good agreement with the reference values in terms of the median charge levels and widths of the charge distributions.

Copyright © 2017 American Association for Aerosol Research  相似文献   


6.
During occupational exposure studies, the use of conventional scanning mobility particle sizers (SMPS) provides high quality data but may convey transport and application limitations. New instruments aiming to overcome these limitations are being currently developed. The purpose of the present study was to compare the performance of the novel portable NanoScan SMPS TSI 3910 with that of two stationary SMPS instruments and one ultrafine condensation particle counter (UCPC) in a controlled atmosphere and for different particle types and concentrations.

The results show that NanoScan tends to overestimate particle number concentrations with regard to the UCPC, particularly for agglomerated particles (ZnO, spark generated soot and diesel soot particles) with relative differences >20%. The best agreements between the internal reference values and measured number concentrations were obtained when measuring compact and spherical particles (NaCl and DEHS particles). With regard to particle diameter (modal size), results from NanoScan were comparable < [± 20%] to those measured by SMPSs for most of the aerosols measured.

The findings of this study show that mobility particle sizers using unipolar and bipolar charging may be affected differently by particle size, morphologies, particle composition and concentration. While the sizing accuracy of the NanoScan SMPS was mostly within ±25%, it may miscount total particle number concentration by more than 50% (especially for agglomerated particles), thus making it unsuitable for occupational exposure assessments where high degree of accuracy is required (e.g., in tier 3). However, can be a useful instrument to obtain an estimate of the aerosol size distribution in indoor and workplace air, e.g., in tier 2.  相似文献   


7.
For a nonspherical particle, a standard differential mobility analyzer (DMA) measurement yields a mobility-equivalent spherical diameter, but provides no information about the degree of sphericity. However, given that the electrical mobility for nonspheres is orientation-dependent, and that orientation can be manipulated using electric fields of varying strength, one can, in principle, extract some type of shape information through a systematic measurement of mobility as a function of particle orientation. Here, we describe the development of a pulsed-field differential mobility analyzer (PFDMA) which enables one to change the peak E-field experienced by the particle to induce orientation, while still maintaining the same time-averaged field strength as a standard DMA experiment. The instrument is validated with polystyrene latex (PSL) spheres with accurately known size, and gold rods with dimensions accurately determined by transmission electron microscopy (TEM). We demonstrate how the instrument can be used for particle separation and extraction of shape information. In particular, we show how one can extract both length and diameter information for rod-like particles. This generic approach can be used to obtain dynamic shape factors or other multivariate dimensional information (e.g., length and diameter).

Copyright 2014 American Association for Aerosol Research  相似文献   


8.
For decades, soot has been modeled as fractal-like aggregates of nearly equiaxed spherules. Cluster–cluster aggregation simulations, starting from a population of primary particles, give rise to structures that closely match real aerosols of solid particles produced in flames. In such simulations, primary particle size is uncorrelated with aggregate size, as all aggregates contain primary particles drawn from the same population. Aerosol measurements have been interpreted with this geometric model. Examination of transmission electron micrographs of soot samples from various sources shows that primary particle sizes are not well mixed within an aerosol population. Larger aggregates tend to contain larger primary particles and the variation in size is much larger between aggregates than within aggregates. The soot sources considered here are all substantially not well-mixed (aircraft jet engine, inverted diffusion flame, gasoline direct injection engine, heavy-duty compression ignition engine). The observed variations in primary particle size can be explained if soot aggregates are formed and grew by coagulation in small zones of the combustion chamber, prior to dilution and transport (with minimal coagulation) to the sampling system.

Copyright 2014 American Association for Aerosol Research  相似文献   


9.
The Pegasor PPS-M sensor is an electrical aerosol sensor based on diffusion charging and current measurement without particle collection. In this study, the role and effect of each component in the instrument is discussed shortly and the results from a thorough calibration measurements are presented. A comprehensive response model for the operation of the PPS-M sensor was developed based on the calibration results and computational fluid dynamics (CFD) modeling results. The obtained response model, covering the effects of the particle charger, the mobility analyzer, and both diffusion and inertial losses, was tested in the laboratory measurements with polydisperse test aerosols, where a good correlation between the model and the measured results was found.

Copyright 2014 American Association for Aerosol Research  相似文献   


10.
We introduce a new electrical measurement technique for aerosol detection, based on pulsed unipolar charging followed by a non-contact measurement of the rate of change of the aerosol space charge in a Faraday cage. This technique, which we call “aerosol measurement with induced currents,” has some advantages compared to the traditional method of collecting the charged particles on either an electrode or with a particle filter. We describe the method and illustrate it with a simple and miniature (shirt-pocket-sized) instrument to measure lung-deposited surface area. Aerosol measurement by induced currents can also be applied to more complex devices.

Copyright 2014 American Association for Aerosol Research  相似文献   


11.
Accurate measurement of particle size distribution using electrical-mobility techniques requires knowledge of the charging state of the sampled particles. A consistent particle charge distribution is possible with bipolar diffusion chargers operated under steady-state condition. Theoretical steady-state charge distributions for bipolar charging are well established but recent studies have shown that the performance of particle chargers is a strong function of particle size, particle concentration, ion source, and charger operating conditions. Most of these studies have focused on particles smaller than 100 nm and the applicability of these results for particles larger than 100 nm must be investigated. In this study, experimentally obtained singly-charged and doubly-charged fractions are compared against theoretical predictions for particles in the size range of 100 to 900 nm. The experimental results show that the commercial soft X-ray charger performs as theoretically-predicted over the range of conditions studied while the performance of other commonly used radioactive chargers (85Kr and 210Po) are dependent on source strengths, flowrates, particle charge polarities, and particle sizes. From measurements of particle residence times and ion concentrations in different test bipolar chargers, prior observations of flowrate-dependent charging fractions can be explained. Additionally, the results from this study are used to determine an acceptable time period for usage of the commercial TSI 3077A 85Kr chargers for steady-state charging as a function of flowrate.

Copyright © 2018 American Association for Aerosol Research  相似文献   


12.
In this study, the impaction behavior of titanium dioxide (TiO2) agglomerates is evaluated, and the described method allows for the break-up and bounce of the particles to be monitored simultaneously. The degree of sintering and the primary particle size of the TiO2 agglomerates were varied. The agglomerates were impacted onto the impaction plate of a single-stage micro-orifice uniform impactor, after which the bounced particles were collected in a low-pressure sampling chamber for subsequent analyses. The particle trajectories were simulated to accurately estimate the impaction velocity, which is one of the key parameters in the impaction process. A high degree of sintering significantly reduced the number of broken bonds, whereas reducing the primary particle size caused only minor differences in the number of broken bonds. The particles that bounced but did not break up either had a smaller primary particle size or were sintered. Decreasing the primary particle size also reduced the mass-based fraction of the bouncing particles.

Copyright 2014 American Association for Aerosol Research  相似文献   


13.
Direct ultraviolet (UV) photoionization enables electrical charging of aerosol nanoparticles without relying on the collision of particles and ions. In this work, a low-strength electric field is applied during particle photoionization to capture charge as it is photoemitted from the particles in continuous flow, yielding a novel electrical current measurement. As in conventional photocharging-based measurement devices, a distinct electrical current from the remaining photocharged particles is also measured downstream. The two distinct measured currents are proportional to the total photoelectrically active area of the particles. A three-dimensional numerical model for particle and ion (dis)charging and transport is evaluated by comparing simulations of integrated electric currents with those from charged soot particles and ions in an experimental photoionization chamber. The model and experiment show good quantitative agreement for a single empirical constant, KcI, over a range of particle sizes and concentrations providing confidence in the theoretical equations and numerical method used.

Copyright © 2018 American Association for Aerosol Research  相似文献   


14.
The effective density and size-resolved volatility of particles emitted from a Rolls-Royce Gnome helicopter turboshaft engine are measured at two engine speed settings (13,000 and 22,000 RPM). The effective density of denuded and undenuded particles was measured. The denuded effective densities are similar to the effective densities of particles from a gas turbine with a double annular combustor as well as a wide variety of internal combustion engines. The denuded effective density measurements were also used to estimate the size and number of primary particles in the soot aggregates. The primary particle size estimates show that the primary particle size was smaller at lower engine speed (in agreement with transmission electron microscopy analysis). As a demonstration, the size-resolved volatility of particles emitted from the engine is measured with a system consisting of a differential mobility analyzer, centrifugal particle mass analyzer, condensation particle counter, and catalytic stripper. This system determines the number distributions of particles that contain or do not contain non-volatile material, and the mass distributions of non-volatile material, volatile material condensed onto the surface of non-volatile particles, and volatile material forming independent particles (e.g., nucleated volatile material). It was found that the particulate at 13,000 RPM contained a measurable fraction of purely volatile material with diameters below ~25 nm and had a higher mass fraction of volatile material condensed on the surface of the soot (6%–12%) compared to the 22,000 RPM condition (1%–5%). This study demonstrates the potential to quantify the distribution of volatile particulate matter and gives additional information to characterize sampling effects with regulatory measurement procedures.

Copyright © 2017 American Association for Aerosol Research  相似文献   


15.
This article presents a cylindrical counter-current flow diffusion denuder with high efficiency penetration of nanoparticles, for non-specific removal of trace gases from an air flow. The denuder was designed to exchange gases in the sample flow by diffusion to the purge flow across a cylindrical microporous glass tube. Laboratory test results indicated that removal efficiencies of gases increased with a lower sample flow rate and a higher sample to purge flow rate ratio. Additionally, the pore size of the microporous glass did not affect gas removal efficiency and particle penetration following optimization of sample and purge flow rate conditions. Significantly high particle penetration was obtained for the counter flow denuder technique (94% penetration for 20 nm of polystyrene latex particle [PSL]) that agreed with theoretical estimation attributed to diffusion loss.

Copyright © 2017 American Association for Aerosol Research  相似文献   


16.
Measurement systems for particle sizing starting at 1 nm are used to bridge the gap between mass spectrometer measurements and traditional aerosol sizing methods, and thus to enable measurement of the complete size distribution from molecules and clusters to large particles. Such a measurement can be made using a scanning mobility particle sizer equipped with a diethylene glycol growth engine (e.g., TSI Model 3777 Nano Enhancer) along with a condensation particle counter, and a differential mobility analyzer (DMA) appropriate for such small sizes. Previous researchers have used high-resolution DMA (HRDMA) and also the TSI Nano-DMA (Model 3085) in such a scanning mobility particle sizer system. In this study, we evaluate the performance of the recently introduced TSI 1 nm-DMA (Model 3086). The transfer function was characterized using 1–2 nm monomobile molecular ion standards. The same measurements were repeated on a TSI Nano-DMA, with good agreement to previously published values. From the measured transfer function, the resolution of each DMA model was determined as a function of particle size and sheath flow rate. Resolution of the TSI 3086 in the 1–2 nm range was 10–25% higher than the TSI 3085. Measured resolutions of the TSI 3086 were 10–20% lower than theoretically predicted values, whereas those of the Model 3085 were 0–10% lower.

Copyright © 2018 TSI Inc.  相似文献   


17.
18.
A new primary standard method for calibrating optical particle counters (OPC) has been developed based on quantitative gravitational deposition on a silicon wafer and accurate counting of the particles by a wafer surface scanner (WSS). The test aerosol consists of 3-μm diameter monodisperse polystyrene latex (PSL) spheres at concentrations in the range of 0.1 cm?3 to 1 cm?3. A key element to the calibration is the ability to generate monodisperse PSL spheres without residue particles by use of a virtual impactor and differential mobility analyzer. The use of these devices reduced the percentage of residue particles from more than 99.98% to about 5%. The expanded relative uncertainty (95% confidence level) in the number concentration determined with a WSS for a deposition of 200 particles is 17.8%. The major uncertainty component arises from the Poisson fluctuations in the aerosol concentration because of the low concentration. This methodology has advantages of a fast scanning time by the WSS of minutes compared to hours or days by microscopy and of counting every particle deposited compared to often only a small fraction via microscopy.

The WSS was used in the calibration of an OPC based on 12 depositions with concentrations ranging from 0.1 cm?3 to 1 cm?3 for each deposition. Make-up air was added to the aerosol entering the OPC so that the lowest achievable concentration for the OPC measurement is about 0.01 cm?3 in this study. The detection efficiency of the OPC was measured to be 0.984 with an expanded uncertainty of 13.4%.

Copyright 2014 American Association for Aerosol Research  相似文献   


19.
20.
The effect of ozonation on membrane flux and water quality was investigated in an ozonation ultrafiltration (UF) hybrid system. Crossflow UF was performed in total recycle mode to study the effect of ozonation on membrane fouling and disinfection by-product formation potentials of organics. Total organic carbon (TOC), UV absorbance at 254 ran (UV254) and trihalomethane formation potential (THMFP) were measured as water quality parameters.

The effect of ozonation on membrane flux was found to be largely dependent on raw water quality as well as ozone dose. In case of upstream water (A), preozonation achieved significant flux enhancement regardless of ozone dose. Whereas, for the downstream water (B), the steady state flux was increased or decreased depending on ozone dose.

The analysis based on the resistance-in-series model provided the mechanistic interpretation on the membrane flux variation. Ozonation in an ozone-ultrafiltration system always brought about a decrease in cake resistance (Rc) and an increase in fouling resistance (Rf). Based on the measurement of particle size distribution and zeta potential, the reduction in cake resistance through ozonation was attributed to an increase in particle size due to “ozone-induced particle destabilization”. However, the increase in the fouling resistance seems to be caused partly by the microbial characteristics of raw water.

Although there was little effect on TOC, ozone-UF treatment could get much higher removal of UV 254, THMFP (lday) and THMPF/TOC ratio than UF treatment alone.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号