首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To assess indoor bioaerosols, a virtual impactor having 1 µm cutoff diameter was designed, fabricated, and evaluated with computational fluid dynamics simulation and also with laboratory test using polystyrene latex particles. Two other cutoff diameters of 635 nm and 1.5 µm were obtained by changing the inlet flow rate and the ratio of minor channel-to-inlet flow rates. In field test, the virtual impactor was operated with varying cutoff diameter and field-emission scanning electron microscope (FE-SEM) analysis was performed for each cutoff diameter to observe morphologies of indoor aerosol particles sampled at the major and minor outlet channels. Particles were sampled at both outlet channels using the SKC Button Aerosol sampler and subsequently cultured. By colony counting, it was found that 56% of cultured fungal particles and 63% of cultured bacterial particles had aerodynamic sizes smaller than 1 µm. MALDI-TOF analysis and visual inspection of culture samples were used to identify indoor bacterial and fungal species, respectively. Nearly same species of bacteria and fungi were detected both in the major and minor flow channels.

© 2017 American Association for Aerosol Research  相似文献   


2.
We introduced monodisperse calibrant particles into an eight-stage non-viable Andersen cascade impactor (ACI) operated at 28.3 L/min and separately quantified the particle mass captured under each of the four concentric rings of nozzles on stages 0 and 1, the entry and succeeding stages of this impactor. On both stages, we found that each ring of nozzles has a particle capture efficiency behavior that differs from the others, and the fraction of calibrant particles deposited under each of the individual rings of nozzles depended on the particle size. We believe this behavior derives primarily from a radial flow velocity non-uniformity associated with recirculation zones introduced by the 110° expansion angle of the inlet cone. Because of these recirculation zones, the inertia of particles larger than about 5 µm aerodynamic diameter will cause their point-wise local concentration to differ from the concentration at the inlet entry. This concentration maldistribution continues to stage 1 primarily because of the annular collection plate at stage 0. The influence of the inlet cone aerodynamics on the performance of both stages means that the size of particles deposited on these plates will be uncertain unless the aerosol transport entering the impactor associated with calibration using monodisperse particles exactly simulates the in-use aerosol flow conditions. The degree of realism necessary in the calibration method has heretofore not been discussed in published calibrations of the ACI, introducing uncertainty in the size interpretation of the particle mass collected on stages 0 and 1 in practical applications of this impactor.

Copyright © 2017 American Association for Aerosol Research  相似文献   


3.
Size-segregated aerosol vertical profiles in the troposphere are critically important for source attribution, transformation processes, atmospheric stability, and radiative forcing. For the first time, the development of a 6-stage impactor for real-time balloon-borne measurements of size-segregated (cutoff diameter [Dae]: 0.15–5?µm) aerosol mass concentrations in the free troposphere was tested during spring 2016 over Hyderabad, India, is presented. Total aerosol mass concentrations obtained with the 6-stage impactor (MTI) and a co-located optical particle counter (MTOPC) measurements at the surface under ambient conditions agreed to within 15%. The effect of aerosol particle growth on the MTI data are assessed using an urban aerosol particle model by scaling mass concentration of water-soluble (hydrophilic) aerosol particles at ambient relative humidity (RH) to that at RH = 50%. An overall uncertainty of the measurement of the MTI was estimated to be about 19%. The altitude variation of size-segregated mass concentrations of aerosol particles along with thermodynamic variables depicted convectively well-mixed layer extending up to about 4.5?km within which aerosol particles showed two distinct layers, one at ~2?km and another at about 4.5?km. The size-resolved air samples containing aerosol particles collected using the balloon-borne 6-stage impactor will be useful for their chemical characterization and also long-range transport studies.

Copyright © 2019 American Association for Aerosol Research  相似文献   


4.
We evaluated a newly developed Portable Aerosol Collector and Spectrometer (PACS) in the laboratory. We developed an algorithm to estimate mass concentration by size and composition with a PACS. In laboratory experiments, we compared particle size distributions measured with the PACS to research instruments for multi-modal aerosols: two-mode generated by spark discharge, consisting of ultrafine (fresh Mn fume) and fine particles (aged Cu fume); and three-mode produced by adding coarse particles (Arizona road dust) to the two-mode. Near-real-time size distributions from the PACS compared favorably to those from a scanning mobility particle sizer and an aerodynamic particle sizer for the three-mode aerosol (number, bias?=?9.4% and R2 = 0.96; surface area, bias?=?17.8%, R2 = 0.77; mass, bias = ?2.2%, R2 = 0.94), but less so for the two-mode aerosol (number, bias = ?17.7% and R2 = 0.51; surface area, bias = ?45.5%, R2 = 0; for mass, bias = ?81.75%, R2 = 0.08). Elemental mass concentrations by size were similar to those measured with a nano micro-orifice uniform deposition impactor for coarse-mode particles, whereas agreement was considerably poorer for ultrafine- and fine-mode particles. The PACS has merit in estimating multi-metric concentrations by size and composition but requires further research to resolve discrepancies identified for two-mode aerosol.

Copyright © 2019 American Association for Aerosol Research  相似文献   


5.
We compared the performance of a low-cost (~$500), compact optical particle counter (OPC, OPC-N2, Alphasense) to another OPC (PAS-1.108, Grimm Technologies) and reference instruments. We measured the detection efficiency of the OPCs by size from 0.5 to 5 µm for monodispersed, polystyrene latex (PSL) spheres. We then compared number and mass concentrations measured with the OPCs to those measured with reference instruments for three aerosols: salt, welding fume, and Arizona road dust. The OPC-N2 detection efficiency was similar to the PAS-1.108 for particles larger than 0.8 µm (minimum of 79% at 1 µm and maximum of 101% at 3 µm). For 0.5-µm particles, the detection efficiency of the OPC-N2 was underestimated at 78%, whereas PAS-1.108 overestimated concentrations by 183%. The mass concentrations from the OPCs were linear (r ≥ 0.97) with those from the reference instruments for all aerosols, although the slope and intercept were different. The mass concentrations were overestimated for dust (OPC-N2, slope = 1.6; PAS-1.108, slope = 2.7) and underestimated for welding fume (OPC-N2, slope = 0.05; PAS-1.108, slope = 0.4). The coefficient of variation (CV, precision) for OPC-N2 for all experiments was between 4.2% and 16%. These findings suggest that, given site-specific calibrations, the OPC-N2 can provide number and mass concentrations similar to the PAS-1.108 for particles larger than 1 µm.

Copyright © 2016 American Association for Aerosol Research  相似文献   


6.
The polarization ratio method is used for fast in-situ characterization of unimodal condensed aerosols of e-cigarettes. The method is based on 90°-light scattering of polarized 680 nm laser light by the droplet ensemble inside an optically defined measuring volume. Mass median droplet diameter (MMD) is derived from the ratio of scattered light from horizontally and vertically polarized incident light beams assuming a fixed value of the geometric standard deviation of the aerosol mass distribution. MMD is used to correct for the size dependence of the mass-based scattering signal of vertically polarized light to obtain the mass concentration if the sensor is calibrated once with an aerosol with a fixed MMD. The sensor uses commercially available aerosol photometers, and its application to e-cigarette aerosols was validated with an impactor for MMD and with a filter measurement for mass concentration. Good correlation (r2 > 0.97) for both parameters was observed. Application ranges are mass concentration range 0.5–50 mg/L, MMD 0.2–1.2 µm, 100 ms time resolution, and 0.2–3 L/min flow rate. The usefulness of this simple sensor for e-cigarette aerosol characterization is demonstrated by developing a scaling law between MMD and operating parameters of an e-cigarette, i.e., puff flow rate and mass concentration.

Copyright © 2018 American Association for Aerosol Research  相似文献   


7.
Low-cost sensors are effective for measuring the mass concentration of ambient aerosols and second-hand smoke in homes, but their use at concentrations relevant to occupational settings has not been demonstrated. We measured the concentrations of four aerosols (salt, Arizona road dust, welding fume, and diesel exhaust) with three types of low-cost sensors (a DC1700 from Dylos and two commodity sensors from Sharp), an aerosol photometer, and reference instruments at concentrations up to 6500 µg/m3. Raw output was used to assess sensor precision and develop equations to compute mass concentrations. EPA and NIOSH protocols were used to assess the mass concentrations estimated with low-cost sensors compared to reference instruments. The detection efficiency of the DC1700 ranged from 0.04% at 0.1 µm to 108% at 5 µm, as expected, although misclassification of fine and coarse particles was observed. The raw output of the DC1700 had higher precision (lower coefficient of variation, CV = 7.4%) than that of the two sharp devices (CV = 25% and 17%), a finding attributed to differences in manufacturer calibration. Aerosol type strongly influenced sensor response, indicating the need for on-site calibration to convert sensor output to mass concentration. Once calibrated, however, the mass concentration estimated with low-cost sensors was highly correlated with that of reference instruments (R2= 0.99). These results suggest that the DC1700 and Sharp sensors are useful in estimating aerosol mass concentration for aerosols at concentrations relevant to the workplace.

© 2016 American Association for Aerosol Research  相似文献   


8.
A new primary standard method for calibrating optical particle counters (OPC) has been developed based on quantitative gravitational deposition on a silicon wafer and accurate counting of the particles by a wafer surface scanner (WSS). The test aerosol consists of 3-μm diameter monodisperse polystyrene latex (PSL) spheres at concentrations in the range of 0.1 cm?3 to 1 cm?3. A key element to the calibration is the ability to generate monodisperse PSL spheres without residue particles by use of a virtual impactor and differential mobility analyzer. The use of these devices reduced the percentage of residue particles from more than 99.98% to about 5%. The expanded relative uncertainty (95% confidence level) in the number concentration determined with a WSS for a deposition of 200 particles is 17.8%. The major uncertainty component arises from the Poisson fluctuations in the aerosol concentration because of the low concentration. This methodology has advantages of a fast scanning time by the WSS of minutes compared to hours or days by microscopy and of counting every particle deposited compared to often only a small fraction via microscopy.

The WSS was used in the calibration of an OPC based on 12 depositions with concentrations ranging from 0.1 cm?3 to 1 cm?3 for each deposition. Make-up air was added to the aerosol entering the OPC so that the lowest achievable concentration for the OPC measurement is about 0.01 cm?3 in this study. The detection efficiency of the OPC was measured to be 0.984 with an expanded uncertainty of 13.4%.

Copyright 2014 American Association for Aerosol Research  相似文献   


9.
To address the critical need for improving the chemical characterization of the organic composition of ambient particulate matter, we introduce a combined thermal desorption aerosol gas chromatograph—aerosol mass spectrometer (TAG-AMS). The TAG system provides in-situ speciation of organic chemicals in ambient aerosol particles with hourly time resolution for marker compounds indicative of sources and transformation processes. However, by itself the TAG cannot separate by particle size and it typically speciates and quantifies only a fraction of the organic aerosol (OA) mass. The AMS is a real-time, in-situ instrument that provides quantitative size distributions and mass loadings for ambient fine OA and major inorganic fractions; however, by itself the AMS has limited ability for identification of individual organic compounds due to the electron impact ionization detection scheme used without prior molecular separation.

The combined TAG-AMS system provides real-time detection by AMS followed by semicontinuous analysis of the TAG sample that was acquired during AMS operation, achieving simultaneous and complementary measurements of quantitative organic mass loading and detailed organic speciation. We have employed a high-resolution time-of-flight mass spectrometer (HR-ToF-MS) to enable elemental-level determination of OA oxidation state as measured on the AMS, and to allow improved compound identification and separation of unresolved complex mixtures (UCM) measured on the TAG. The TAG-AMS interface has been developed as an upgrade for existing AMS systems. Such measurements will improve the identification of organic constituents of ambient aerosol and contribute to the ability of atmospheric chemistry models to predict ambient aerosol composition and loadings.

Copyright 2014 American Association for Aerosol Research  相似文献   


10.
The characteristics of fugitive dust emitted from vehicles traveling on unpaved dirt roads were measured using a suite of instruments including a real-time fugitive dust sampler. The fugitive dust sampler is formed from a combination of a large particle inlet and an optical particle spectrometer that reports particle sizes from 6 to 75 µm. The large particle inlet permits the sampling of particles up to 75 µm with only a moderate dependence of sampling efficiency on wind-speed. Measurements made with the sampler showed that particles as large as ~50 µm were suspended from vehicular movement on the dirt roads, with the mode of the fugitive dust particle number size distribution ~2 µm, while the mass distribution mode was ~7 µm. A comparison of the fugitive dust sampler measurements with those made using standard PM instruments showed that the conventional instruments have a wind-direction bias that can result in under-sampling of large particles. The current measurements suggest that particles suspended from dirt roadways are of importance for local air quality within the near-road environment.

Copyright © 2017 American Association for Aerosol Research  相似文献   


11.
An experimental method is developed for the purpose of simulating plutonium aerosol source terms with conventional metals in laboratory. In this method, metal samples are aerosolized by high explosive detonation in a containment vessel. Aerosols having aerodynamic diameter (AD) less than 10 µm are then collected by a cascade impactor and analyzed by atomic absorption spectroscopy. Two sets of experiments were conducted. In the first set, five candidate metal samples (Ag, W, Sn, Ce, and V) were tested. It is found that the cumulative mass distribution of silver under certain conditions was in good agreement with that of plutonium from the Operation Roller Coaster-Double Track experiment. Thus, silver is chosen as a surrogate to simulate the plutonium aerosol source term. In the second set, silver aerosol source term was studied in detail with different test configurations. The results demonstrate that the peak of the mass-size distribution of silver is in the AD range 1.1–3.3 µm. The amount and fraction of relatively small silver aerosols decrease significantly with time due to coagulation and deposition. Interestingly, the amount of silver in aerosols could be expressed as a quadratic function of the peak detonation pressure.

© 2016 American Association for Aerosol Research  相似文献   


12.
In order to evaluate the survivability of airborne viruses and the sampling performance of an eight-stage non-viable Andersen impactor in typical indoor environments featuring low viral aerosol concentrations, aerosols of a male-specific bacteriophage (MS2), human adenovirus type 1 (HAdV-1), and avian influenza virus (AIV) were sampled size-selectively using the impactor in an environmental chamber. Live virus titer, total virus RNA or DNA concentration, and intensity of a fluorescein tracer were measured to calculate relative virus recovery and virus survival. Viral aerosols were first sampled for 1 and 6 h at 25°C and 50% relative humidity (RH). Virus inactivation and plate overloading were found to be significant in the impactor. Viral aerosols were then sampled at different temperature and humidity levels. MS2 and AIV showed higher survival at lower temperature. Absolute humidity (AH) was found to be a better predictor of virus survival than RH, and the interaction between AH and temperature was not significant. For the tested AH range of 8.8 to 15.2 g/m3, MS2 and HAdV-1 had the highest survival at the lowest AH while AIV had the highest survival at the highest AH. More than 95% of mass collected was for particles smaller than 4.7 m, with the mass median diameter of 1.5 m. In the nebulizer, virus inactivation was not significant at 10 psi (69 kPa) compressed air pressure for up to 6 h of nebulization. Nebulizer analysis also reveals that the use of fluorescein tracer may not always accurately predict the physical loss of virus.

Copyright 2014 American Association for Aerosol Research  相似文献   


13.
A very compact cascade impactor with 2 L/min sampling flow rate has been developed. Its dimensions are 8.5 cm L x 5.0 cm W x 11.4 cm H, and it weighs 0.27 kg, with ten impaction stages with aerodynamic cutpoints in the range of 60 nm to 9.6 μm. The top eight stages, collecting particles down to 170 nm in aerodynamic diameter, can be used as a stand-alone impactor with a portable, battery-powered pump. Particle collection efficiencies were obtained with two types of commonly used substrates, aluminum foil and glass fiber filters. Impactor cutpoints with aluminum foil substrates agree well with conventional impactor theory. The efficiency curves are sharp with minimum overlap between them. Thus, the compact impactor design does not compromise its performance, making it suitable for general purpose applications where a lower sampling flow rate provides adequate mass collection. With glass fiber filter substrates, impactor cutpoints are smaller and the efficiency curves are less steep, in particular for the last stages. Also, the collection efficiency curves do not drop to near zero at small Stokes numbers. Instead, excess particle collection efficiency of around 10% is observed for the top six stages, and becomes higher for the last four stages. This is due to the collection of particles by filtration as the impinging jets penetrate the filter substrate. Thus, using glass fiber filter substrates should generally be avoided due to the non-ideal effect on the impactor collection efficiency curves, especially for the last two stages.

Copyright © 2018 American Association for Aerosol Research  相似文献   


14.
Two nozzles, modified and original, were tested in a sampler that was placed in a wind tunnel and penetration efficiencies, √Stk50, and slope of the performance curve were determined by challenging the sampler with fluorescent-tagged monodisperse test aerosol particles having known concentration. It was shown that a change in convergence angle of the modified nozzle can affect impactor performance. The √Stk50 for original and modified nozzles were 0.57 and 0.49, respectively. The slope of the efficiency curve for original and modified nozzles was 1.52 and 1.36, respectively.

© 2017 American Association for Aerosol Research  相似文献   


15.
Primary biological aerosol particles (PBAP) such as pollen and fungal spores can induce allergenic responses and affect health in general. Conditions such as allergic rhinitis (hay fever) and asthma have been related to pollen concentrations. Likewise some pollen have been shown to induce ice nucleation and cloud condensation at higher temperatures than those associated with some chemical species, thereby affecting planet Earth's albedo and overall radiative balance. Hence, the near real-time (on-line) monitoring of airborne pollen and other PBAP using a variety of spectroscopic and light scattering techniques represents an area of growing development and consequence.

In this study, two separate field campaigns (one at a rural site in Ireland and the other at an urbanized location in Germany) were performed to detect and quantify pollen releases using a novel on-line fluorescence spectrometer (WIBS-4). The results were compared with results obtained using more traditional Hirst-type impactors. Size, “shape,” and fluorescence characteristics of ambient particles were used to determine the concentrations and identity of the PBAP likely to be pollen grains.

The concentration results obtained for both methodologies at both the Irish and German sites correlated very well, with R 2 values >0.9 determined for both campaigns. Furthermore, the sizing data available from the WIBS-4 approach employed in Ireland indicated that pollen grains can be identified in appropriate conditions. WIBS-4 measurements of Yew pollen both in the laboratory and at the rural site indicated almost identical size ranges of 25 to 27 μm. Yew pollen is generally reported to be in this range, but the measurements reported here are the first of their type providing data on the size of in-flight Yew pollen.

Copyright 2014 American Association for Aerosol Research  相似文献   


16.
Objectives: To investigate the effect of different self-etch adhesive systems application techniques: active or passive in a single or double layer on adhesive–dentin microshear bond strength.

Methods: Occlusal surfaces of 48 extracted human molars were ground to expose flat superficial dentin surfaces. Specimens were randomly divided into two main groups according to the tested self-etch adhesive system either: One-step self-etch (AdperTM easy-one) or two-step self-etch (AdperTM SE Plus). Each adhesive system was applied on the prepared dentin surfaces followed one of these techniques: (1) Passive application of a single layer, (2) Active application of single layer, (3) Passive application of double adhesive layer (with light curing in between), and (4) Active application of double adhesive layers. Resin composite was packed inside micro-tubes fixed on the bonded dentin surfaces and light cured for 40 s. All specimens were stored in artificial saliva either for 24 h or 3 months before testing. Microshear bond strength test was employed using a universal testing machine at a crosshead speed of 0.5 mm/min.

Results: AdperTM SE Plus showed higher significant microshear bond strength in compared with AdperTM easy-one. For both adhesive systems active application showed higher significant microshear bond strength to dentin than passive application. Double application of adhesive systems showed lower microshear bond strength than single application.

Conclusion: Active application of self-etch adhesives could improve the dentin microshear bond strength. Double application with curing in between the layers did not improve the bond strength to the tested adhesive.  相似文献   


17.
Results of a numerical study of the RespiCon sampler performance in the calm air are presented. The air flow is described by the Navier–Stokes equations of axisymmetric stationary viscous flow of incompressible fluid that are numerically integrated by the computational fluid dynamics (CFD) software FLUENT. The collection efficiencies of RespiCon impactor stages agree quite well with experimental data and curves of the European standards for the thoracic and respirable dust fractions. The aspiration efficiencies derived from the numerical model overestimate the experimental data in the range of particle sizes of 10 μm < dp < 40 μm; however, they correctly predict the value of maximal size of aspirated particles. A new design of the RespiCon sampler with a higher volume flow rate was developed.

Copyright 2014 American Association for Aerosol Research  相似文献   


18.
The objective of this study was to obtain the multi-metric occupational exposure assessment to graphene family nanomaterials (GFNs) particles of workers engaged in the large-scale production of graphene. The study design consisted of the combination of (i) direct-reading instruments, used to evaluate the total particle number concentrations relative to the background concentration (time series with spatial approach) and the mean size-dependent characteristics of particles (mean diameter and surface-area concentration) and (ii) filter-based air sampling for the determination of size-resolved particle mass concentrations. The data obtained from direct reading measurement were then used to estimate the 8-h time weighted average (8-h TWA) exposure to GFNs particles for workers involved in different working tasks. Workers were generally exposed to 8-h TWA GFNs particle levels lower than the proposed reference value (40,000 particle/cm3). Furthermore, despite high short-term exposure conditions were present during specific operations of the production process, the possibility of significant exposure peaks is not likely to be expected. The estimated 8-h TWA concentration showed differences between the unexposed (<100 particle/cm3; <0.05 µg/m3) and exposed subjects (mean concentration ranging from 909 to 6438 particle/cm3 and from 0.38 to 3.86 µg/m3). The research outcomes can be of particular interest because the exposure of workers in real working conditions was assessed with a multi-metric approach; in this regard, the study suggests that workers who are directly involved in some specific working task (material sampling for quality control) have higher potential for occupational exposure than operators who are in charge of routine production work.

© 2016 American Association for Aerosol Research  相似文献   


19.
Objectives: The aim of this study was to evaluate the effect of bioactive glass–ceramic particles (Biosilicate®) addition on surface nanoroughness and topography of Resin-modified glass ionomer cements (RMGICs).

Methods: Experimental materials were made by incorporating 2 wt% of Biosilicate® into Fuji II LC® (FL) and Vitremer® (VT) powders. Disks of RMGICs (with and without Biosilicate®) measuring 0.5 cm (diameter) × 0.5 mm (thickness) were fabricated and polished. Samples were stored at 37 °C in dry or immersed in distilled water for 30 days. Digital images (20 × 20 μm) from the surfaces were obtained by means of an atomic force microscopy. Three images were acquired for each sample, and four nanoroughness measurements were performed in each image. Nanoroughness (Ra, nm) was assessed by Nanoscope Software V7. Data were analyzed with ANOVA and Student–Newman–Keuls multiple comparisons (p < 0.05). SEM images were obtained for surface topography analysis.

Results: FL was significantly rougher than VT (p < 0.05) in wet and dry conditions. The addition of Biosilicate® increased the surface roughness in VT and decreased in FL, regardless of the storage media (p ≤ 0.05). No differences existed between materials and storage conditions after Biosilicate® addition. Significance: The Biosilicate® particles addition produced changes on the surface nanoroughness of the RMGICs. These changes depended on the particles size of the original cements in dry conditions. In water storage, dissolution of the Biosilicate® particles, a silica-rich gel formation, and a hydroxyl carbonate apatite precipitation on the surface of the materials changed the nanoroughness surface. FL was the roughest in both conditions.

Significance: The Biosilicate® particles addition produced changes on the surface nanoroughness of the RMGICs. These changes depended on the particles size of the original cements in dry conditions. In water storage, dissolution of the Biosilicate® particles, a silica-rich gel formation, and a hydroxyl carbonate apatite precipitation on the surface of the materials changed the nanoroughness surface. FL was the roughest in both conditions.  相似文献   


20.
Objectives: The aim of this in vitro study was to evaluate the effect of different desensitizers’ application on the microleakage of previously restored Class V composite resin restorations.

Materials and methods: Class V cavities were prepared on the buccal surfaces of 40 extracted human third molars. Forty box-shaped cavities were divided into four groups, based on the desensitizers used (n = 10). All teeth were restored with the same bonding agent and composite material. No desensitizer was applied in the control group. In the experimental groups, BisBlock, Gluma and Universal bonding agents were the desensitizers. The desensitizers were applied after completion of composite restorations according to manufacturers’ instructions. All specimens were then thermocycled at 5–55 °C, with a 10-s dwell time for 500 cycles. The samples were then immersed in 0.5% methylene blue dye for 24 h, sectioned into two equal halves, evaluated for microleakage using a stereomicroscope at 30× magnification and scored on a scale of 0–3. The data were analysed using the Kruskal–Wallis test at the significance level p < 0.05.

Results: There were no significant differences in microleakage after desensitizer application (p > 0.05). However, based on the obtained numerical values in our study, while the BisBlock and bonding groups showed lower microleakage at the occlusal margin, BisBlock, Gluma and bonding group showed lower microleakage at the gingival margin compared to the control group.

Conclusions: The application of desensitizers as a post-treatment option could be considered an advisable procedure to minimize microleakage.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号