首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Soot is a climate forcer and a dangerous air pollutant that has been increasingly regulated. In aviation, regulatory measurements of soot mass concentration in the exhaust of aircraft turbine engines are to be based on measurements of black carbon (BC) calibrated to elemental carbon (EC) content of diffusion flame soot. The calibration soot must currently meet only one criterion: minimum EC to total carbon (TC) ratio of 0.8. However, not including soot properties other than the EC/TC ratio may potentially lead to discrepancies between different BC measurements. We studied the response of two instruments, the AVL Micro-Soot Sensor (MSS) and the Artium Laser-Induced Incandescence 300 (LII), to soot from two miniature combustion aerosol standard (mini-CAST) burners. By changing the air-fuel ratio, premixing nitrogen into the fuel, and using a catalytic stripper to remove volatile compounds, we produced a wide range of particle morphologies and EC contents. As the EC content decreased, both the instruments underreported the EC mass, but the LII diverged more severely. Upon closer investigation of eight conditions with EC/TC > 0.8, the LII underreporting was found independent of primary particle size, but increased with decreasing geometric mean diameter of the soot agglomerates. As the geometric mean diameter decreased from 160 nm to 50 nm, the differences between the LII and MSS increased from 15% to 50%. The results suggest that in addition to EC content, calibration procedures for the regulatory BC measurements may need to take particle size distributions into account.

© 2016 American Association for Aerosol Research  相似文献   


4.
The effect of potassium on the oxidation of a model carbonaceous material (Printex U, namely, soot for brevity) has been investigated under isothermal conditions. For this purpose, Raman spectroscopy, Transmission Electron Microscopy (TEM), and Brunaure, Emmet, Teller surface area characterization have been applied to investigate structural changes occurring during soot oxidation both in the presence and in the absence of potassium. The Raman spectra of the model soot during combustion showed that oxidation preferentially involves the amorphous carbon fraction of the soot and only subsequently it affects the more ordered sp2 domains. However, in the K-doped Printex U the oxidation of both the amorphous and more ordered sp2 structures occurs concurrently. These findings have been confirmed by TEM analysis and explain the observed higher combustion activity of K-containing sample.

Copyright © 2016 American Association for Aerosol Research  相似文献   


5.
Nascent soot particles with mobility diameters ≤10 nm were measured in an ethylene/air premixed flame to shed light on the challenges and potential artifacts affecting studies on soot inception by differential mobility analysis (DMA) techniques. The size distribution functions (SDFs) of particles with charge acquired either naturally or diffusively upon ion seeding were measured at several positions in the flame using rapid-dilution probing and a high-resolution DMA for different values of the ratio of dilution ratio to residence time (DR/Δt). The SDFs are roughly bimodal with a sub-3 nm mode and a larger one that appears either downstream in the flame or for low DR/Δts. Soot nuclei smaller than 3 nm preferentially acquire positive charge, which brings into question the assumption of steady-state charging probability of flame sampled soot nuclei in the bipolar diffusion neutralizer. The approximately polarity-symmetric lognormal SDF of larger particles is attributed to nuclei coagulation. Naturally charged particles increase in number when lowering DR/Δt, suggesting either their collisional charging by flame chemi-ions or particle nucleation by condensation of neutral molecules on ions or both. The critical conditions for suppressing particle coagulation and charge redistribution in the sampling system were not achieved under most conditions, despite the fact that values of DR/Δts were more favorable to such a suppression in the present experiment as compared to other studies in the literature. As a result, the identification of this “asymptotic” regime, which is critical to determine the parent SDFs and the charge state of nascent soot in the flame, is still elusive.

© 2016 American Association for Aerosol Research  相似文献   


6.
To obtain reliable mass concentrations of solid particulate matter (PM) in the exhaust emissions from engines using optical instruments, it is essential that the solid PM used for instrument calibration has similar optical properties to the solid PM emitted from the engines being tested. The solid PM emitted from combustion engines is predominantly soot. The optical properties of soot are dictated by its chemical structure, size, and morphology. In this work, the chemical bond structure, primary-particle diameters, aggregate sizes, and morphological parameters of the soot emitted from two laboratory soot generators, widely used for calibrating instruments, are compared to those of soot emitted from three aircraft turbine engines using Raman spectroscopy and transmission electron microscopy. The Raman spectral properties, size, and morphology of soot emitted from aircraft engines are distinctly different from the properties of soot emitted from the soot generators operating under globally near-stoichiometric and fuel-rich conditions. These differences can be attributed to the variations in the size and orientation of the graphitic crystallites, amorphous-carbon content, amount of polyacetylene compounds, deposition of organic material, and extent of oxidation. Conversely, general agreement is observed between the chemical structure, size, and morphology of soot emitted from aircraft engines and the soot emitted from the soot generators operating at globally fuel-lean conditions. The findings of this investigation can be useful for identifying suitable soot particles for the calibration of instruments to measure the mass concentration of solid PM emissions from engines, and for other types of soot.

Copyright © 2017 Crown Copyright  相似文献   


7.
The effective density and size-resolved volatility of particles emitted from a Rolls-Royce Gnome helicopter turboshaft engine are measured at two engine speed settings (13,000 and 22,000 RPM). The effective density of denuded and undenuded particles was measured. The denuded effective densities are similar to the effective densities of particles from a gas turbine with a double annular combustor as well as a wide variety of internal combustion engines. The denuded effective density measurements were also used to estimate the size and number of primary particles in the soot aggregates. The primary particle size estimates show that the primary particle size was smaller at lower engine speed (in agreement with transmission electron microscopy analysis). As a demonstration, the size-resolved volatility of particles emitted from the engine is measured with a system consisting of a differential mobility analyzer, centrifugal particle mass analyzer, condensation particle counter, and catalytic stripper. This system determines the number distributions of particles that contain or do not contain non-volatile material, and the mass distributions of non-volatile material, volatile material condensed onto the surface of non-volatile particles, and volatile material forming independent particles (e.g., nucleated volatile material). It was found that the particulate at 13,000 RPM contained a measurable fraction of purely volatile material with diameters below ~25 nm and had a higher mass fraction of volatile material condensed on the surface of the soot (6%–12%) compared to the 22,000 RPM condition (1%–5%). This study demonstrates the potential to quantify the distribution of volatile particulate matter and gives additional information to characterize sampling effects with regulatory measurement procedures.

Copyright © 2017 American Association for Aerosol Research  相似文献   


8.
9.
Flame-generated soot from miniCAST burners is increasingly being used in academia and industry as engine exhaust soot surrogate for atmospheric studies and instrument calibration. Previous studies have found that elemental carbon (EC) content of miniCAST soot is proportional to the mean particle size. Here, the characterization of a prototype miniCAST generator (5201 Type BC), which was designed to decouple the soot composition from the particle size and produce soot particles with high EC and BC content in a large size range, is reported. This prototype may operate either in a diffusion-flame or a partially premixed-flame mode, an option that was not available in former models. It was confirmed that soot properties, such as EC content and Ångström absorption exponent (AAE), were linked to the overall flame composition. In particular, combustion under fuel-rich conditions provided particles with size coupled to the EC fraction and AAE, i.e. smaller particles exhibited a lower EC fraction and higher AAE. In contrast, with fuel-lean diffusion flames and especially with premixed flames under near overall stoichiometric conditions small particles (down to 30?nm) with high EC/TC ratios (>60%) and low AAE (≈1.4) could be generated even without any thermal after-treatment. This new source might thus serve in the future as a useful surrogate for engine exhaust emissions and help to improve calibration procedures of common aerosol instruments.

Copyright © 2018 The Author(s). Published with license by Taylor & Francis Group, LLC  相似文献   


10.
The effective density ρeff of particles emitted from various types of automobile engines was measured using a differential mobility analyzer (DMA)–aerosol particle mass analyzer method, and their morphology was investigated via transmission electron microscopy analysis. The measured exhaust particles were particles emitted from diesel engines (DEs), gasoline direct injection spark ignition (DISI) engines, gasoline port fuel injection (PFI) engines, and liquefied petroleum gas (LPG) engines. ρeff and the morphology of the particles were measured after classification with the DMA, and six electrical mobility diameters Dm ranging from 30 to 300 nm were selected. ρeff was found to decrease as Dm increased for all particles. A morphological study showed that DE and DISI particles were mainly agglomerates and PFI and LPG particles were mainly nonagglomerates. Numbers and diameters of the primary particles in the agglomerates showed no systematic differences between DE and DISI particles at a given Dm. Rather, the primary particle diameter dp increased with increasing Dm of the agglomerates; the empirical relationship between the two diameters was found to be dp = 8.498ln(Dm) – 12.781 for DE and DISI particles. The core (elemental carbon) diameters in the primary particles of the DE particles increased as Dm increased and were estimated to range from 8.5 nm for Dm = 70 nm to 22.1 nm for Dm = 300 nm. Although the primary particle diameter and core diameter depend on Dm, the organic coating (shell) thickness, which ranged from 5.1 to 7.4 nm, was found to be independent of Dm.

Copyright © 2016 American Association for Aerosol Research  相似文献   


11.
The performance of a thermal denuder (thermodenuder—TD) and a fresh catalytic stripper (CS) was assessed by sampling laboratory aerosol, produced by different combinations of sulfuric acid, octacosane, and soot particles, and marine exhaust aerosol produced by a medium-speed marine engine using high sulfur fuels. The intention was to study the efficiency in separating non-volatile particles. No particles could be detected downstream of either device when challenged with neat octacosane particles at high concentration. Both laboratory and marine exhaust aerosol measurements showed that sub-23 nm semi-volatile particles are formed downstream of the thermodenuder when upstream sulfuric acid approached 100 ppbv. Charge measurements revealed that these are formed by re-nucleation rather than incomplete evaporation of upstream aerosol. Sufficient dilution to control upstream sulfates concentration and moderate TD operation temperature (250°C) are both required to eliminate their formation. Use of the CS following an evaporation tube seemed to eliminate the risk for particle re-nucleation, even at a ten-fold higher concentration of semi-volatiles than in case of the TD. Particles detected downstream of the CS due to incomplete evaporation of sulfuric acid and octacosane aerosol, did not exceed 0.01% of upstream concentration. Despite the superior performance of CS in separating non-volatile particles, the TD may still be useful in cases where increased sensitivity over the traditional evaporation tube method is needed and where high sulfur exhaust concentration may fast deplete the catalytic stripper adsorption capacity.

Copyright © 2018 American Association for Aerosol Research  相似文献   


12.
Abstract

Solid particle number vehicle exhaust measurements necessitate an aerosol conditioning system that removes efficiently volatile particles, does not create artifacts, and minimizes solid nucleation particle losses. Here, we present the development and evaluation of a catalytic stripper (CS) based on a unique dual-function monolithic reactor that oxidizes hydrocarbons and stores sulfur material. The CS was tested for its tetracontane particle removal efficiency, sulfur adsorption capacity with sulfur dioxide, and particle penetration with solid CAST-generated particles. The optimal operation conditions were examined including different aerosol flows and configurations, i.e., as a stand-alone device and as part of a volatile removal system with a hot and a cold dilution stage upstream and downstream of the CS, respectively. The CS managed to comply with current legislation requirements for solid particle number measurements down to 23?nm as a stand-alone device and showed great potential as part of a volatile particle removal (VPR) system for measurements at least down to 10?nm. Finally, we compared the performance of two VPR systems that use the developed CS (VPR-CS) and an evaporation tube (VPR-ET), respectively. Our results suggest that the VPR-CS exhibits higher volatile removal efficiency without creating artifacts while the particle losses are lower with the VPR-ET. Nevertheless, when measuring solid nucleation particles generated by a diesel engine with the VPR-CS, the measurement uncertainty was very low due to its high particle penetration fractions.  相似文献   

13.
A new experimental technique is reported to visualize agglomeration of submicron aerosol particles by laser-induced fluorescence (LIF). The basic idea is to produce or activate the fluorescent tracer material by a chemical reaction triggered by the agglomeration between two chemically different primary particles. Different types of chemical reactions are able to fulfil this task, among others acid–base reactions or molecule solvation. In this work, we demonstrate the feasibility of the fluorescent tracer activation by means of solvation. The fluorescence is activated almost instantaneously when the dry fluorescent material (Fluorescein or Rhodamine B) contained in the dye aerosol is dissolved by a water/glycerol mixture constituting the particles of the solvent aerosol. Estimations of the timescale for diffusional mixing suggest that the fluorescence is activated within 1 ms. Agglomerates can be detected as single particles or in bulk quantities depending on the available laser excitation energy and light sensitivity. In order to enhance agglomeration in the validation experiments, two aerosol streams were electrostatically charged with opposite polarity. Finally, potential variations and applications of the newly introduced technique are briefly discussed, mentioning the detection of humidity among others.

© 2017 American Association for Aerosol Research  相似文献   


14.
Abstract

Highly oxidized multifunctional compounds (HOMs) formed through gas-phase reactions are thought to account for a significant fraction of the secondary organic aerosol (SOA) formed in low-nitric oxide (NO) environments. HOMs are known to be peroxide-rich and unstable in SOA, however, and their fate once they partition into particles is not well understood. In the study reported here, we identified particle-phase reactions and decomposition products for an α-alkoxy hydroperoxyaldehyde that served as a convenient model for HOMs, and also quantified rate and equilibrium constants for cyclic peroxyhemiacetal formation and the effects of particle acidity and relative humidity on reaction products and timescales for decomposition of peroxide-containing compounds. Sulfuric acid increased the rate of acetal formation and subsequent peroxide decomposition, but the effect was eliminated when aqueous seed particles were used in humid air, indicating that organic/aqueous phase separation can affect the ability of strong acids to catalyze these and other reactions in SOA. The results will be useful for understanding and predicting the atmospheric fate of organic peroxides and the effects of their particle-phase reactions on SOA composition.

Copyright © 2018 American Association for Aerosol Research  相似文献   

15.
This work explores the volatility of particles produced from two diesel low temperature combustion (LTC) modes proposed for high-efficiency compression ignition engines. It also explores mechanisms of particulate formation and growth upon dilution in the near-tailpipe environment. The number distribution of exhaust particles from low- and mid-load dual-fuel reactivity controlled compression ignition (RCCI) and single-fuel premixed charge compression ignition (PPCI) modes were experimentally studied over a gradient of dilution temperature. Particle volatility of select particle diameters was investigated using volatility tandem differential mobility analysis (V-TDMA). Evaporation rates for exhaust particles were compared with V-TDMA results for candidate pure n-alkanes to identify species with similar volatility characteristics. The results show that LTC particles are mostly comprised of material with volatility similar to engine oil alkanes. V-TDMA results were used as inputs to an aerosol condensation and evaporation model to support the finding that smaller particles in the distribution are comprised of lower volatility material than large particles under primary dilution conditions. Although our results show that saturation levels are high enough to drive condensation of alkanes onto existing particles under the dilution conditions investigated, they are not high enough to allow homogeneous nucleation of these same compounds in the primary exhaust plume. Therefore, we conclude that observed particles from LTC operation must grow from low concentrations of highly nonvolatile compounds present in the exhaust.

Copyright © 2016 American Association for Aerosol Research  相似文献   


16.
Reactive oxygen species, including hydroxyl radicals generated by particles, play a role in both aerosol aging and PM2.5 mediated health effects. We assess the impacts of switching marine vessels from conventional diesel to renewable fuel on the ability of particles to generate hydroxyl radical when extracted in a simulated lung lining fluid or in water at pH 3.5, for samples of engine emissions from a research vessel when operating on ultra-low sulfur diesel (ULSD) and hydrogenation-derived renewable diesel (HDRD). Samples were collected during dedicated cruises in 2014 and 2015, including aged samples collected by re-intercepting the ship plume. After normalizing to particle mass, particles generated from HDRD combustion had slightly to significantly (5–50%) higher OH generation activity than those from ULSD, a difference that was statistically significant for some permutations of year/fuel/engine speed. Water soluble trace metal concentrations and fuel metal concentrations were similar, and compared to urban Los Angeles samples lower in soluble iron and manganese, but similar for most other trace metals. Because PM mass emissions were higher for HDRD, normalizing to fuel increased this difference. Freshly emitted PM had lower activity than the “plume chase” samples, and samples collected on the ship had lower activity than the urban reference. The differences in OH production correlated reasonably well with redox-active transition metals, most strongly with soluble manganese, with roles for vanadium and likely copper and iron. The results also suggest that atmospheric processing of fresh combustion particles rapidly increases metal solubility, which in turn increases OH production.

Copyright © 2017 American Association for Aerosol Research  相似文献   


17.
The nonvolatile particle number (PN) emissions of late technology diesel heavy-duty vehicles (HDV) are very low due to the introduction of Diesel Particulate Filters (DPF). Nevertheless, a large fraction (50%) of particles below the current lower regulated size (23?nm) was recently reported. Moreover, large differences between laboratory and PN Portable Emission Measurement Systems (PN-PEMS) have been observed. In order to better understand such differences, the physical properties of the exhaust aerosol from two Euro VI technology diesel heavy-duty engines were studied. It was found that urea injection leads to formation of nonvolatile particles. The produced particles covered a wide size range spanning from below 10?nm to above 100?nm. As such, they contribute to the regulated PN emissions, with measured concentrations corresponding to as high as 2?×?1011 #/kWh over a World Harmonized Transient Cycle (WHTC). However, a large fraction of them was undetected owing to their small particle size. Low-cutoff size (10?nm) Condensation Particle Counters (CPCs) (which are under discussion to be included in the regulations) measured up to twice as high concentrations. Considering the large particle losses in the sampling systems at this size range, the true concentrations can be two times higher from what the low-cutoff CPCs reported. When the temperature of the SCR system exceeded a threshold of 300?°C, the produced particles were found to be positively charged, increasing the average exhaust aerosol charge up to +3 elementary charges per particle. Scanning Mobility Particle Sizer (SMPS) measurements of non-neutralized samples revealed that even the smallest of them can carry more than one positive charge. The findings of this study can explain the differences reported between PEMS and laboratory systems and especially those based on diffusion charging. They also provide insight for a refinement of technical requirements prescribed in the European PEMS regulation to more accurately quantify the PN emissions from such technologies.  相似文献   

18.
To reduce air pollution and the reliance on fossil fuel, biodiesel has been widely investigated as an alternative fuel for diesel engines. The purpose of this study is to investigate the influence of waste cooking oil (WCO) biodiesel on the physical properties and the oxidation reactivity of the particles emitted by a diesel engine operating on WCO biodiesel as the main fuel. Experiments were conducted on a direct-injection diesel engine fueled with biodiesel, B75 (75% biodiesel and 25% diesel on volume basis, v/v), B50, B20, and diesel fuel, at five engine loads and at an engine speed of 1920 rev/min. Particulate samples were collected to analyze the particulate nanostructure, volatility, and oxidation characteristics. Biodiesel or low-load operation leads to smaller primary particles and more disordered nanostructures having shorter and more curved graphene layers. It can be found that particles from biodiesel, blended fuels, or low-load operation have higher volatile mass fractions and faster oxidation reaction rates than particles from diesel or heavy-load operation. The higher oxidation reaction rates are due mainly to the smaller particle size, the more disordered nanostructure, and the higher volatile mass fraction. It is also found that changes in primary particle size and particulate nanostructure are not directly proportional to the biodiesel content, while changes in particulate volatility and particulate oxidation reactivity are proportional to the biodiesel content. The use of biodiesel can enhance particulate oxidation reactivity and the regeneration of soot particles in an after-treatment device.

Copyright © 2016 American Association for Aerosol Research  相似文献   


19.
20.
A scanning mobility particle sizer was used to determine the size, number, and mass concentration of particle emissions from an ethanol-fueled homogeneous charge compression ignition (HCCI) engine. Semi-volatile particle composition was characterized using tandem differential mobility analysis (TDMA). Variable temperature thermal conditioning was used to gain insight into particle volatility and a catalytic stripper was used to determine the solid particle distribution. Four engine conditions were evaluated, including low to moderate range loads and motoring (deceleration, coasting). Results indicated that aerosol from a fully premixed HCCI engine under firing conditions is formed almost entirely via nucleation of semi-volatile material originating from the lubricating oil. TDMA analysis indicated 98% of total particle volume evaporated below 100°C. Results pointed towards homogeneous nucleation of precursors derived from the organic species in the lubricating oil, possibly in combination with a sulfur species. The motoring condition, with no fuel injected, exhibited the highest number and mass concentrations. During motoring, there was poor sealing leading to increased atomization of oil and associated ash emissions. Emissions were lower during firing with better sealing and much less atomization, but evaporation of the most volatile fractions of the lubricating oil still led to significant PM emissions consisting of nearly entirely semi-volatile particles containing very little ash.

© 2017 American Association for Aerosol Research  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号