首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fraction of outdoor aerosol that penetrates into indoor environments plays an important role in determining the contribution of outdoor particles to the total lung dose of particles in human exposure. The objective of this study was to investigate the physical processes affecting migration of outdoor traffic particles into indoor environments. Particle number size distributions were measured by a fast mobility particle sizer system in both indoor and outdoor environments of a house located in close proximity to a busy street in Bologna (Italy) in the period February–April 2012. Indoor to outdoor (I/O) ratios for submicron particle number concentrations showed strong dependence on particle size and meteorological conditions. The loss rates of particles due to deposition, coagulation, and evaporation were determined using dynamic mass balance and coagulation models. Higher loss rates were found for small particles (nucleation and Aitken mode) indoors than for larger particles (accumulation mode). The coagulation and evaporation processes made a significant contribution to the loss of traffic nanoparticles indoors, especially during the day time. Application of positive matrix factorization to the indoor and outdoor particle size distributions showed a substantial loss of traffic-generated nucleation mode particles in the indoor environment, with evaporation playing a major role.

Copyright © 2017 American Association for Aerosol Research  相似文献   


2.
The few clusters [B?nA+n+1]+ (n = 0,1) with resolvable mobilities formed in electrosprays of large salts have been used for nanoparticle instrument testing and calibration at sizes smaller than 2 nm. Extensions of this modest size range by charge reduction with uncontrolled gas phase ions has resulted in impure singly charged clusters. Here, we combine two oppositely charged electrosprays of solutions of the same salt B?A+, including: (CnH2n+1)4N+Br? (n = 4,7,12,16), the large phosphonium cation (C6H13)3(C16H33)P+ paired with the anions Im? [(CF3SO2)2N?] or FAP? [(C2F5)3PF3?], and the asymmetric pair [1-methyl-3-pentylimidazolium+FAP?]. Both polarities are simultaneously produced by this source in comparable abundances, primarily as singly charged A+nB?n±1, with tiny contributions from higher charge states. Some but not all of these clusters produce narrow mobility peaks typical of pure ions, even beyond n = 43. Excellent independent stable control of the positive and the negative sprays brought very close to each other is achieved by isolating them electrostatically with a symmetrically interposed metallic screen. Two nanoDMAs covering the size range up to 30 nm (Halfmini and Herrmann DMAs, with classification lengths of 2 and 10 cm) are characterized with these standards, revealing resolving powers considerably higher than previously seen with unipolar electrospray sources. The bipolar source of pure and chemically homogeneous clusters described permits studying size and charge effects in a variety of aerosol instruments in the 1–4 nm size range.

Copyright © 2017 American Association for Aerosol Research  相似文献   

3.
Abstract

The physical and chemical properties as well as the oxidative potential (OP) of water soluble components of coal combustion fine particles were examined. A laboratory-scale pulverized-coal burning system was used to produce coal combustion particles at different burning temperatures of 550?°C, 700?°C, 900?°C, and 1,100?°C. Few studies have reported the effects of burning temperature on both the chemistry and toxicity of coal combustion particles. The highest mass emission factor of particulate matter less than 2.5?µm (PM2.5) was found to be produced at 700?°C (3.51?g/kg), owing to strong elemental carbon (EC) emission and ash formation (ions and elements) resulting from the incomplete combustion of tar and char, and mineral fragmentation. The highest organic carbon in PM2.5 was found at 550?°C. At a temperature higher than 700?°C, the fraction of carbonaceous species decreased while the fractions of ions and elements increased owing to ash formation. Sulfate was found to be the dominant ionic species, followed by sodium, calcium, and magnesium. The highest emission of elements (Al, As, Ba, Cd, Co, Cu, Fe, Mn, Ni, Pb, Sr, Ti, V, and Zn) and the highest fractions of Fe and Al were observed at 700?°C. Intrinsic OP activities obtained from dithiothreitol (DTT) and electron spin resonance (ESR) assays showed the highest values at 550?°C, suggesting that fine particles from low-temperature coal combustion had the highest reactive oxygen species generation capability (potentially toxic) among various tested burning temperatures. The results of principal component analysis suggested a correlation between OP-DTT activity and OC, EC, Cd, Co, V, and Zn, while OP-ESR activity was associated with chloride, nitrate, Ba, Pb, Sr, and Ti.

© 2018 American Association for Aerosol Research  相似文献   

4.
Routine calibrations of online aerosol chemical composition analyzers are important for assessing data quality during field measurements. The combination of a differential mobility analyzer (DMA) and condensation particle counter (CPC) is a reliable, conventional method for calibrations. However, some logistical issues arise, including the use of radioactive material, quality control, and deployment costs. Herein, we propose a new, simple calibration method for a particle mass spectrometer using polydispersed aerosol particles combined with an optical particle sizer. We used a laser-induced incandescence–mass spectrometric analyzer (LII-MS) to test the new method. Polydispersed aerosol particles of selected chemical compounds (ammonium sulfate and potassium nitrate) were generated by an aerosol atomizer. The LII section was used as an optical particle sizer for measuring number/volume size distributions of polydispersed aerosol particles. The calibration of the MS section was performed based on the mass concentrations of polydispersed aerosol particles estimated from the integration of the volume size distributions. The accuracy of the particle sizing for each compound is a key issue and was evaluated by measuring optical pulse height distributions for monodispersed ammonium sulfate and potassium nitrate particles as well as polystyrene latex particles. A comparison of the proposed method with the conventional DMA-CPC method and its potential uncertainties are discussed.

Copyright © 2018 American Association for Aerosol Research  相似文献   


5.
This study was conducted to observe a potential formation and/or release of aerosol particles related to manufacturing processes inside a cleanroom. We introduce a novel technique to monitor airborne sub 2 nm particles in the cleanroom and present results from a measurement campaign during which the total particle number concentration (>1 nm and >7 nm) and the size resolved concentration in the 1 to 2 nm size range were measured. Measurements were carried out in locations where atomic layer deposition (ALD), sputtering, and lithography processes were conducted, with a wide variety of starting materials. During our campaign in the clean room, we observed several time periods when the particle number concentration was 105 cm?3 in the sub 2 nm size range and 104 cm?3 in the size class larger than 7 nm in one of the sampling locations. The highest concentrations were related to the maintenance processes of the manufacturing machines, which were conducted regularly in that specific location. Our measurements show that around 500 cm?3 sub 2 nm particles or clusters were in practice always present in this specific cleanroom, while the concentration of particles larger than 2 nm was less than 2 cm?3. During active processes, the concentrations of sub 2 nm particles could rise to over 105 cm?3 due to an active new particle formation. The new particle formation was most likely induced by a combination of the supersaturated vapors, released from the machines, and the very low existing condensation sink, leading to pretty high formation rates J1.4 nm = (9 ± 4) cm?3 s?1 and growth rates of particles (GR1.1–1.3 nm = (6 ± 3) nm/h and GR1.3–1.8 nm = (14 ± 3) nm/h).

Copyright © 2017 American Association for Aerosol Research  相似文献   

6.
The algorithm of the analytical inversion of aerosol size distribution is proposed in this work. As the diffusion battery separates particles into several fractions according to their diffusivity, the total spectrum can be represented as the sum of spectra of fractions. Analytical formulas are derived to calculate mean diameters for particles in different fractions using diffusion battery penetrations as input parameters. The spectra of fractions are approximated by lognormal functions. Two analytical solutions for the aerosol size distribution inversion problem are discussed. The sizing accuracy of analytical solutions is investigated, comparing them with the measurements through transmission electron microscopy using the laboratory-generated NaCl aerosol. The agreement is demonstrated to be within 10% accuracy. It is shown that in case of two-mode size distribution, the spectrum components are well resolved for rather distant peaks (modal diameters of 10 and 300?nm) and poorly resolved for nearby modes (50 and 300?nm). To improve the peak resolution, the procedure of spectrum correction is applied demonstrating an excellent peak separation. Finally, the peak resolution is experimentally verified for the laboratory-generated two-mode spectra of tungsten oxide–NaCl aerosol with the modal diameters of 10 and 60?nm, respectively. Both analytical solutions demonstrated good peak resolution.

Copyright © 2018 American Association for Aerosol Research  相似文献   

7.
Direct ultraviolet (UV) photoionization enables electrical charging of aerosol nanoparticles without relying on the collision of particles and ions. In this work, a low-strength electric field is applied during particle photoionization to capture charge as it is photoemitted from the particles in continuous flow, yielding a novel electrical current measurement. As in conventional photocharging-based measurement devices, a distinct electrical current from the remaining photocharged particles is also measured downstream. The two distinct measured currents are proportional to the total photoelectrically active area of the particles. A three-dimensional numerical model for particle and ion (dis)charging and transport is evaluated by comparing simulations of integrated electric currents with those from charged soot particles and ions in an experimental photoionization chamber. The model and experiment show good quantitative agreement for a single empirical constant, KcI, over a range of particle sizes and concentrations providing confidence in the theoretical equations and numerical method used.

Copyright © 2018 American Association for Aerosol Research  相似文献   


8.
A butanol-type ultrafine condensation particle counter (UCPC, Model 3776, TSI, Inc., Shoreview, MN, USA), which can achieve a 50% detection efficiency diameter (d50) of 2.5 nm using a capillary-sheath structure, was modified and tested in the laboratory for airborne measurements. The aerosol flow rate through the capillary is a key factor affecting the quantification of aerosol particle number concentrations. A pressure-dependent correction factor for the aerosol flow rate was determined using a newly added mass flow meter for the sheath flow and the external calibration system. The effect of particle coincidence in the optical sensing volume was evaluated using an aerosol electrometer (AE, Model 3068B, TSI, Inc.) as a reference. An additional correction factor for the coincidence effect was derived to improve the quantification accuracy at higher concentrations. The particle detection efficiency relative to the AE was measured for mobility diameters of 3.1–50 nm and inlet absolute pressures of 101–40 kPa. The pressure dependence of the d50 value, asymptotic detection efficiency, and shape of the particle detection efficiency curve is discussed, along with simple theoretical calculations for the diffusion loss of particles and the butanol saturation ratio in the condenser.

© 2017 American Association for Aerosol Science  相似文献   


9.
Abstract

Particle transfer theory for steady-state differential mobility analyzers (DMAs) with and without diffusion is reviewed in detail with a particular focus on the assumptions and approximations made in the analysis. Impacts of the approximations are discussed and, where available, methods to reduce the errors of these approximations are suggested. The nondiffusing theory uses just one approximation, affecting the centroid calculation, which can be readily addressed via numerical modeling of the electric field. The diffusing theory makes numerous approximations to achieve an analytical expression. One of the most serious of these, neglecting secondary flows in the vicinities of the aerosol entrance and exit slits, could be improved upon using a numerical model of the flow field. Losses in the aerosol entrance plumbing can perturb the inlet profile to the classification region. The maximum effects on the transfer function are estimated to be a 1% increase in the mean mobility and a 14% reduction of the nondiffusing contribution to the variance. Methods of fitting transfer theory to measurements are also reviewed. Tandem differential mobility analyzer measurements generally do not have the resolving power to distinguish different shapes of the transfer function but newer measurements using truly monomobile ions have the potential to more rigorously test the diffusive transfer model. In adjusting the width of the theoretical transfer function to fit measurements from a real DMA demonstrating nonideal performance, it is physically more meaningful and accurate to use an additive adjustment to the variance as opposed to a multiplicative adjustment to the width.

Copyright (c) 2018 American Association for Aerosol Research  相似文献   

10.
A new algorithm is proposed for the determination of aerosol particle size distribution from a set of screen diffusion battery penetrations. The idea is to determine the size spectra of the fractions of particles separated by the sections of diffusion battery, so the total size distribution is the sum of the spectra of fractions. The spectrum of each fraction is approximated by the lognormal function, which is defined by two parameters: the standard geometric deviation (SGD) and geometric mean diameter. The SGD value is chosen to be 1.35 for each fraction. The geometric mean diameters of fractions are calculated from the diffusion battery penetrations. For this purpose, analytical formulas are derived to link the mean single-fiber collection efficiency for each fraction with the experimentally measured penetrations. Then the mean diameters of fractions are calculated from the collection efficiencies using the fan model filtration theory. To achieve a better size resolution, numerical approach is proposed to calculate the particle size spectrum using the analytical solution as an initial approximation. The validity of the analytical and numerical solutions is investigated by comparing them with the spectra determined by means of transmission electron microscopy and gravity settling. For this purpose, the aerosol is generated using the evaporation-nucleation technique, Collison-type nebulizer, and hot-wire bulb generator. It is found that the analytical solution demonstrates a good sizing accuracy but relatively poor size resolution, while the numerical approach results in both good sizing accuracy and good size resolution for the two-mode aerosol.

Copyright © 2018 American Association for Aerosol Research  相似文献   


11.
Many aerosol instruments require calibration to make accurate measurements. A centrifugal particle mass analyzer (CPMA) and aerosol electrometer can be used to calibrate aerosol instruments that measure mass concentration. To understand the sources of uncertainty in the calibration method, two CPMA-electrometer systems were tested to measure the repeatability and intermediate precision of the system, where the repeatability is the standard deviation of several measurements using the same system over a short period of time, and the intermediate precision is the standard deviation of several measurements using different instruments with different calibrations over a long period of time. It was found that the repeatability of the CPMA and the aerosol electrometer were both 0.8%, while the intermediate precision was 1.3% and 2.2%, respectively. The intermediate precision of the aerosol electrometers determined here compares well with a broader study by national metrology institutes which determined an intermediate precision of ~1.7%. By propagation of uncertainty, it is expected that a CPMA-electrometer system would have repeatability of 1.1% and an intermediate precision of ~2.1%. This compares favorably to thermal-optical analysis methods which aim to measure black carbon mass concentrations for instrument calibration, which have a repeatability in the range of 8.5–20% and reproducibility in the range of 20–26% for elemental carbon. Thus, the CPMA-electrometer method may be a good alternative to existing instrument calibration procedures.

Copyright © 2019 American Association for Aerosol Research  相似文献   


12.
Two nozzles, modified and original, were tested in a sampler that was placed in a wind tunnel and penetration efficiencies, √Stk50, and slope of the performance curve were determined by challenging the sampler with fluorescent-tagged monodisperse test aerosol particles having known concentration. It was shown that a change in convergence angle of the modified nozzle can affect impactor performance. The √Stk50 for original and modified nozzles were 0.57 and 0.49, respectively. The slope of the efficiency curve for original and modified nozzles was 1.52 and 1.36, respectively.

© 2017 American Association for Aerosol Research  相似文献   


13.
The inference of particle size distributions from differential mobility analyzer (DMA) data requires knowledge of the charge distribution on the particles being measured. The charge distribution produced by a bipolar aerosol charger depends on the properties of the ions produced in the charger, and on the kinetics of charge transfer from molecular ions or ion clusters to the particles. A single parameterization of a theoretically predicted charge distribution is employed in most DMA analyses regardless of the atmospheric conditions being probed. Deviations of the actual charge distribution from that assumed in the data analysis will bias the estimated particle size distribution. We examine these potential biases by modeling measurements and data inversion using charge distributions calculated for a range of atmospheric conditions. Moreover, simulations were performed using the ion-to-particle flux coefficients predicted for a range of properties of both the particles and ions. To probe the biases over the full range of particle sizes, the measurements were simulated through an atmospheric new particle formation event. The differences between the actual charge distribution and that according to the commonly used parametrization resulted in biases as large as a factor of 5 for nucleation-mode particles, and up to 80% for larger particles. Incorrect estimates of the relative permittivity of the particles or not accounting for the temperature and pressure effects for measurements at 10 km altitude produced biases in excess of 50%; three-fold biases result from erroneous estimates of the ion mobility distribution. We further report on the effects of the relative permittivity of the ions, the relative concentrations of negative and positive ions, and truncation of the number of charge states considered in the inversion.

Copyright © 2017 American Association for Aerosol Research  相似文献   


14.
A water-based condensational growth channel was developed for imaging mobility-separated particles within a parallel plate separation channel of the Fast Integrated Mobility Spectrometer (FIMS). Reported are initial tests of that system, in which the alcohol condenser of the FIMS was replaced by a water-based condensational growth channel. Tests with monodispersed sodium chloride aerosol verify that the water-condensational growth maintained the laminar flow, while providing sufficient growth for particle imaging. Particle positions mapped onto particle mobility, in accordance with theoretical expectations. Particles ranging in size from 12 nm to 100 nm were counted with the same efficiency as with a butanol-based ultrafine particle counter, once inlet and line losses were taken into account.

Copyright © 2017 American Association for Aerosol Research  相似文献   


15.
We describe development of a portable aerosol mobility spectrometer (PAMS) for size distribution measurement of submicrometer aerosol. The spectrometer is designed for use in personal or mobile aerosol characterization studies and measures approximately 22.5×22.5×15 cm and weighs about 4.5 kg including the battery. PAMS uses electrical mobility technique to measure number-weighted particle size distribution of aerosol in the 10–855 nm range. Aerosol particles are electrically charged using a dual-corona bipolar corona charger, followed by classification in a cylindrical miniature differential mobility analyzer. A condensation particle counter is used to detect and count particles. The mobility classifier was operated at an aerosol flow rate of 0.05 L/min, and at two different user-selectable sheath flows of 0.2 L/min (for wider size range 15–855 nm) and 0.4 L/min (for higher size resolution over the size range of 10.6–436 nm). The instrument was operated in voltage stepping mode to retrieve the size distribution in approximately 1–2 min. Sizing accuracy and resolution were probed and found to be within the 25% limit of NIOSH criterion for direct-reading instruments. Comparison of size distribution measurements from PAMS and other commercial mobility spectrometers showed good agreement. The instrument offers unique measurement capability for on-person or mobile size distribution measurement of ultrafine and nanoparticle aerosol.  相似文献   

16.
Flames generate a large amount of chemically and thermally ionized species, which are involved in the growth dynamics of particles formed in flames. However, existing models predicting particle formation and growth do not consider particle charging, which may lead to bias in the calculated size distribution of particles. In this study, Fuchs' charging theory was coupled with a monodisperse particle growth model to study the simultaneous charging and coagulation of nanoparticles during combustion. In order to quantify the charging characteristics of nanoparticles, a high-resolution DMA was used to measure the mobilities of ions generated from a premixed flat flame operated at various conditions. The effect of temperature on ion–particle and particle–particle combination coefficients was further examined. The proposed model showed that the influence of charging on particle growth dynamics was more prominent when the ion concentration was comparable to or higher than the particle concentrations, a condition that may be encountered in flame synthesis and solid fuel-burning. Simulated results also showed that unipolar ion environments strongly suppressed the coagulation of particles. In the end, a simplified analysis of the relative importance of particle charging and coagulation was proposed by comparing the characteristic time scales of these two mechanisms.

© 2017 American Association for Aerosol Research  相似文献   


17.
A combination of a real-time high resolution aerosol differential mobility spectrometer (DMS500) and an electrical low pressure impactor (used as a traditional impactor) was applied to simultaneously collect real-time data and analyze particle size by weighing the mass of the aerosol collected on the impactor stages. Nonrefillable fixed-power as well as refillable and power adjustable e-cigarettes (e-cigs) were tested at various puffing flow rates. Two types of smoking machines were used: a smoke cycle simulator that provides instantaneous straight sample delivery to the analyzer and a Human Profile Pump that utilizes two synchronized pistons and operates by sample pull–push mode. Chemical analysis of the major components of e-liquid (propylene glycol, vegetable glycerol, water, and nicotine) was made using a proton nuclear magnetic resonance method. Limited amounts of samples collected on impactor stages were analyzed by liquid chromatography time-of-flight mass-spectrometry to find newly formed semi- or low-volatile organic compounds in e-cig aerosol and by transmission electron microscopy to check for the presence of nanoparticles in e-cig emissions. Differential mobility and inertial impaction methods showed comparable particle size results. Method of aerosol generation (type of the smoking machine) as well as puffing topography affected the e-cig particle size. Newly formed semi- or low-volatile organic compounds as well as metal nanoparticles were found in e-cig aerosol.

Copyright © 2018 American Association for Aerosol Research  相似文献   

18.
Condensation particle counter (CPC) technology has continued to evolve, with the introduction of several new instruments over the last several years. An important aspect in the characterization of these instruments is the measurement of their time response. Yet there is no standardly accepted approach for this measurement. Here we evaluate different classically used methods for determining CPC time response, and present the potential pitfalls associated with these approaches. Further, we introduce a new simple definition for the term response time, ?, which is based on the first-order systems response, while providing a practical definition by corresponding to ~95% change in concentration. We also present results for various commonly used CPCs, and for the Airmodus A11 nano Condensation Nucleus Counter (nCNC) system, the TSI 3777+3772 Nano Enhancer system, and Aerosol Dynamics Inc.'s (ADI) new versatile water condensation particle counter.

Copyright © 2018 American Association for Aerosol Research  相似文献   

19.
Cyclone behavior is complex and difficult to model. Recent years have seen the development of new and better predictive models for cyclone performance, which are providing new insights into how cyclone performance is affected by cyclone geometry. Experimental data are essential for verification of such models. In this article we present a dataset of more than 250 experimental determinations of cyclone penetration. The dataset includes cyclones with a wide range of sizes and geometries, tested at a wide range of flow rates. We illustrate some empirical, semi-empirical and mathematical approaches to modeling these cyclone data. For our data, we show that mathematical modeling approaches developed for large gas-cleaning cyclones can also be applied to small aerosol monitoring cyclones, to diverse cyclone geometries, and laminar flow operating conditions.

Copyright © Crown copyright  相似文献   


20.
The electronic cigarette (EC) is a new source of indoor airborne particles. To better understand the impacts of secondhand vaping (SHV) emissions on indoor air quality, real-time measurements of particle size distribution, particle number concentration (PNC), fine particulate matter (PM2.5), CO2, CO, and formaldehyde were conducted before, during, and after 10 min EC-use among 13 experienced users in an 80 m3 room. To assess particle transport in the room, multiple sampling locations were set up at 0.8, 1.5, 2.0, and 2.5 m away from the subjects. The arithmetic mean (standard deviation) of background PNC and PM2.5 concentrations in the room were 6.39 × 103 (1.58 × 102) particles/cm3 and 8 (1) μg/m3, respectively. At 0.8 m away from EC users, right after initiation of puffing, the PNC and PM2.5 concentrations can reach a peak of ~105 particles/cm3 and ~3 × 103 µg/m3, respectively, and then dropped quickly to background levels within 20 s due to dilution and evaporation. At the 0.8 m sampling location, the mean PNC and PM2.5 concentrations during puffing were 2.48 × 104 (2.14 × 104) particles/cm3 and 188 (433) µg/m3, respectively. In addition, two modes of SHV particles were observed at about 15 and 85 nm. Moreover, concentrations of SHV particles were negatively correlated with the distances to EC users. At the 1.5 m location, PNC and PM2.5 levels were 9.91 × 103 (1.76 × 103) particles/cm3 and 19 (14) µg/m3, respectively. Large variations of mean PNC levels exhaled per puff were observed both within and between EC users. Data presented in this study can be used for SHV particle exposure assessment.

Copyright © 2017 American Association for Aerosol Research  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号